Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(9): 7319-7331, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439898

RESUMO

BACKGROUND OF THE STUDY: Digitalis purpurea (L) is an important medicinal plant growing at Alpine region of Himalayas and withstands low temperatures and harsh climatic conditions existing at high altitude. It serves as an ideal plant system to decipher the tolerance to cold stress (CS) in plants from high altitudes. METHODS AND RESULTS: To understand the complexity of plant response to CS, we performed a comparative physiological and biochemical study complemented with proteomics in one-month-old D. purpurea grown at 25 °C (control) and 4 °C (CS). We observed an enhanced accumulation of different osmo-protectants (glycine betaine, soluble sugar and proline) and higher transcription (mRNA levels) of various antioxidant enzymes with an increased antioxidant enzyme activity in D. purpurea when exposed to CS. Furthermore, higher concentrations of non-enzymatic antioxidants (flavonoids, phenolics) was also associated with the response to CS. Differential proteomic analysis revealed the role of various proteins primarily involved in redox reactions, protein stabilization, quinone and sterol metabolism involved in CS response in D. purpurea.. CONCLUSION: Our results provide a framework for better understanding the physiological and molecular mechanism of CS response in D. purpurea at high altitudes.


Assuntos
Resposta ao Choque Frio , Digitalis , Digitalis/genética , Antioxidantes/metabolismo , Proteômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Estresse Fisiológico
2.
Physiol Mol Biol Plants ; 27(6): 1395-1412, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34177153

RESUMO

Maize, a C4 sub-tropical crop, possesses higher temperature optima as compared to the C3 plants. Low temperature (LT) stress confines the growth and productivity of maize. In this context, two maize genotypes, LT tolerant Gurez local and LT susceptible Gujarat-Maize-6 (G-M-6) were analysed in present study for various osmolytes and gene expression of antioxidant enzymes including Ascorbate-glutathione (AsA-GSH) besides trehalose biosynthetic pathways. With the progressive LT treatment, Gurez local showed lesser accumulation of stress markers like hydrogen peroxide (H2O2) and malondialdehyde, a significant increase in osmoprotectants like free proline, total protein, total soluble sugars, trehalose, total phenolics and glycine betaine, and a significant reduction in the plant pigments as compared to the G-M-6. Additionally, Gurez local was found to possess a well-established antioxidant defense system as revealed from the elevated transcripts and enzyme activities of various enzymes of AsA-GSH pathway. Higher gene expression and enzyme activities were exhibited by superoxide dismutase, catalase and peroxidase besides the gene expression of trehalose biosynthetic pathway enzymes. Moreover, through principal component analyses, a positive correlation of all analysed parameters with the LT tolerance was noticed in Gurez local alone demarcating the genotypes on the basis of their extent of LT tolerance. Overall, the present study forms the basis for unravelling of LT tolerance mechanisms and improvement in the performance of the temperate maize. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01020-3.

3.
J Plant Physiol ; 169(6): 605-13, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22325624

RESUMO

Sugar metabolism was studied in sweet sorghum (SSV74) that is known to store sugars in the mature internodes and which is reported to give grain yields twice that of a grain sorghum variety (SPV1616). Comparison of sugar accumulation in these two varieties was carried out at three stages of growth and in the upper and lower internodes. In spite of large differences in the level of sugar accumulation, osmolarity of the sap did not vary as significantly in the two varieties. Significant contribution of variety, stage and internode position was seen for the variation observed in sugar content. Though the activities of sugar metabolizing enzymes namely sucrose synthase (in the synthesis and cleavage directions), sucrose phosphate synthase and invertase (cytoplasmic and vacuolar) also varied in a stage- and internode-specific manner in the two varieties, these enzymes did not contribute significantly to the variation observed in sugar content. Transcriptional expression of one sucrose synthase (SUC1), two sucrose phosphate synthase (SPS2 and SPS3) and a vacuolar invertase (INV3) gene were lower in sweet sorghum as compared to grain sorghum. Sweet sorghum also showed lower expression of two sucrose transporters (SUT1 and SUT4), which correlated to higher sugar accumulation in this variety. Differential expression of the sugar metabolizing enzymes and sucrose transporters in sweet and grain sorghum suggest a role for signaling molecules and transcription factors in regulating sugar accumulation observed in the mature internodes of sweet sorghum, which needs to be investigated.


Assuntos
Metabolismo dos Carboidratos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Sorghum/enzimologia , Sacarose/metabolismo , Análise de Variância , Metabolismo dos Carboidratos/genética , Condutividade Elétrica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Concentração Osmolar , Oxirredução , Exsudatos de Plantas/metabolismo , Caules de Planta/genética , Sorghum/genética , Sorghum/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA