Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(2): 025602, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29226850

RESUMO

We investigate the temperature dependence of infrared properties at nanometer length scales in La0.67Sr0.33MnO3 (LSMO) thin film with a thickness of 47 unit cells grown on SrTiO3 substrate. The infrared nano-imaging experiments were performed using a near-field optical microscope in conjunction with a variable temperature heating stage. The near-field infrared data is consistent with the bulk of the LSMO film undergoing the thermally-driven non-percolative second-order transition from a metallic, ferromagnetic phase to an insulating, paramagnetic phase. We find persistent infrared contrast on the nanoscale that is independent of temperature and which we attribute to two novel phases with different conductivities coexisting in the vicinity of the film-substrate interface. These two coexisting phases at the film-substrate interface do not undergo the metal-insulator transition (MIT) and hence are different from the metallic, ferromagnetic and insulating, paramagnetic phases in the bulk of the film. At temperatures approaching the nominal MIT temperature, repeated scans of the same microscopic area at constant temperature reveal bimodal fluctuation of the near-field infrared amplitude. We interpret this phenomenon as slow, critical fluctuations of the conductivity in the bulk of the LSMO film.

2.
Opt Express ; 25(17): 20421-20430, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041723

RESUMO

Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm-1 to 2,500 cm-1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO2 and SrTiO3.

3.
Phys Rev Lett ; 116(20): 209901, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27258890

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.116.036401.

4.
Phys Rev Lett ; 116(3): 036401, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26849604

RESUMO

We report the first application of critical cluster techniques to the Mott metal-insulator transition in vanadium dioxide. We show that the geometric universal properties of the metallic and insulating puddles observed by scanning near-field infrared microscopy are consistent with the system passing near criticality of the random field Ising model as temperature is varied. The resulting large barriers to equilibrium may be the source of the unusually robust hysteresis phenomena associated with the metal-insulator transition in this system.

5.
Phys Rev Lett ; 108(14): 147002, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540817

RESUMO

We report an infrared optical study of the pnictide high-temperature superconductor BaFe(1.84)Co(0.16)As(2) and its parent compound BaFe(2)As(2). We demonstrate that electronic correlations are moderately strong and do not change across the spin-density wave transition or with doping. By examining the energy scale and direction of spectral weight transfer, we argue that Hund's coupling J is the primary mechanism that gives rise to correlations.

6.
Phys Rev Lett ; 107(6): 066403, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902347

RESUMO

Using time-resolved far-infrared spectroscopy, we observe multiple routes for photoinduced phase transitions in V(2)O(3). This includes (i) a photothermal antiferromagnetic to paramagnetic transition and (ii) an incipient strain-generated paramagnetic metal to paramagnetic insulator transition, which manifests as coherent oscillations in the far-infrared conductivity. The ∼100 ps conductivity oscillation results from coherent acoustic phonon modulation of the bandwidth W. Our results indicate that poor metals are particularly amenable to coherent strain control of their electronic properties.

7.
Phys Rev Lett ; 104(15): 157002, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20482012

RESUMO

We report a novel aspect of the competition and coexistence between magnetism and superconductivity in the high-T(c) cuprate La(2-x)Sr(x)CuO4 (La214). With a modest magnetic field applied H parallel c axis, we monitored the infrared signature of pair tunneling between the CuO2 planes and discovered the complete suppression of interlayer coupling in a series of underdoped La214 single crystals. We find that the in-plane superconducting properties remain intact, in spite of enhanced magnetism in the planes.

8.
Science ; 318(5857): 1750-3, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18079396

RESUMO

Electrons in correlated insulators are prevented from conducting by Coulomb repulsion between them. When an insulator-to-metal transition is induced in a correlated insulator by doping or heating, the resulting conducting state can be radically different from that characterized by free electrons in conventional metals. We report on the electronic properties of a prototypical correlated insulator vanadium dioxide in which the metallic state can be induced by increasing temperature. Scanning near-field infrared microscopy allows us to directly image nanoscale metallic puddles that appear at the onset of the insulator-to-metal transition. In combination with far-field infrared spectroscopy, the data reveal the Mott transition with divergent quasi-particle mass in the metallic puddles. The experimental approach used sets the stage for investigations of charge dynamics on the nanoscale in other inhomogeneous correlated electron systems.

9.
Phys Rev Lett ; 94(18): 187003, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15904403

RESUMO

The temperature dependence of the tunneling conductance was measured for various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to vanish above a certain temperature T*. T* is greater than T(c) for the underdoped region and it follows T(c) on the overdoped side. This behavior suggests finite pairing amplitude above T(c) on the underdoped side.

10.
Phys Rev Lett ; 92(16): 167001, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15169253

RESUMO

The doping and temperature dependences of the Hall coefficient, R(H), and ab-plane resistivity in the normal state down to 350 mK is reported for oriented films of the electron-doped high-T(c) superconductor Pr(2-x)Ce(x)CuO(4-delta). The doping dependences of beta (rho=rho(0)+ATbeta) and R(H) (at 350 mK) suggest a quantum phase transition at a critical doping near x=0.165.

11.
Phys Rev Lett ; 88(20): 207004, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12005593

RESUMO

We present point contact spectroscopy (PCS) data for junctions between a normal metal and the electron-doped cuprate superconductor Pr(2-x)CexCuO4 (PCCO). For the underdoped compositions of this cuprate ( x approximately 0.13) we observe a peak in the conductance-voltage characteristics of the point contact junctions. The shape and magnitude of this peak suggest the presence of Andreev bound states at the surface of underdoped PCCO which is evidence for a d-wave pairing symmetry. For overdoped PCCO ( x approximately 0.17) the PCS data do not show any evidence of Andreev bound states at the surface suggesting an s-wave pairing symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA