Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 92(3): 452-468, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28849613

RESUMO

Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (Ar ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with Ar , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia.


Assuntos
Brassica napus/genética , Brassica/genética , Variação Genética , Genoma de Planta/genética , Genômica , Sequência de Aminoácidos , Evolução Biológica , Cruzamento , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Poliploidia , Alinhamento de Sequência , Análise de Sequência de DNA
2.
Nat Commun ; 5: 3930, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24852848

RESUMO

Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus.


Assuntos
Brassica/genética , Evolução Molecular , Genoma de Planta , Poliploidia , Arabidopsis/genética , Sequência Conservada , Elementos de DNA Transponíveis/genética , Conversão Gênica , Dosagem de Genes , Duplicação Gênica , Rearranjo Gênico/genética , Genes Duplicados , Genes de Plantas , Variação Genética , Glucosinolatos/metabolismo , Anotação de Sequência Molecular , Especificidade da Espécie , Sintenia/genética
3.
Plant Physiol ; 159(1): 227-38, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22430843

RESUMO

The pentatricopeptide repeat (PPR) gene family represents one of the largest gene families in higher plants. Accumulating data suggest that PPR proteins play a central and broad role in modulating the expression of organellar genes in plants. Here we report a rice (Oryza sativa) mutant named young seedling albino (ysa) derived from the rice thermo/photoperiod-sensitive genic male-sterile line Pei'ai64S, which is a leading male-sterile line for commercial two-line hybrid rice production. The ysa mutant develops albino leaves before the three-leaf stage, but the mutant gradually turns green and recovers to normal green at the six-leaf stage. Further investigation showed that the change in leaf color in ysa mutant is associated with changes in chlorophyll content and chloroplast development. Map-based cloning revealed that YSA encodes a PPR protein with 16 tandem PPR motifs. YSA is highly expressed in young leaves and stems, and its expression level is regulated by light. We showed that the ysa mutation has no apparent negative effects on several important agronomic traits, such as fertility, stigma extrusion rate, selfed seed-setting rate, hybrid seed-setting rate, and yield heterosis under normal growth conditions. We further demonstrated that ysa can be used as an early marker for efficient identification and elimination of false hybrids in commercial hybrid rice production, resulting in yield increases by up to approximately 537 kg ha(-1).


Assuntos
Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plântula/metabolismo , Sementes/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biomarcadores , Quimera/genética , Quimera/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Clonagem Molecular , Cruzamentos Genéticos , Fertilidade , Genes de Plantas , Vigor Híbrido , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Oryza/anatomia & histologia , Oryza/genética , Fotoperíodo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Sementes/genética , Transcrição Gênica
4.
Plant Sci ; 185-186: 112-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325872

RESUMO

mfs is a partially female-sterile Brassica napus mutant derived from a spontaneous mutation. When the mutant is crossed as a female, very poor seed set is obtained, whereas it is fertile as a pollen donor. The floret of the mutant consisted of almost equal-length stamens, a short pistil, a flat style and ovary, and the stigma was chapped. Measures of pollen viability and pollen tube growth in vitro indicated that the mutation enhanced pollen viability. The papillae of mfs consisted of two conjoint bilobed domes, and the papillar cells were sparse, oblate and large at anthesis, but become withered and senesced quickly afterward. Pollen grains could germinate over the papillar cells, but pollen tubes could not penetrate into it. After flower opening, the number of organelles in mfs papillar cell decreased, the structure of it distinctly degenerated, and vacuolization was abnormally high. Genetic analysis of 3 F2 populations and 3 BC1F1 populations suggested that the mutant trait was controlled by two recessive genes.


Assuntos
Brassica napus/genética , Flores/crescimento & desenvolvimento , Genes Recessivos/genética , Infertilidade das Plantas/genética , Pólen/crescimento & desenvolvimento , Brassica napus/anatomia & histologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/fisiologia , Flores/anatomia & histologia , Flores/genética , Flores/fisiologia , Genes de Plantas/genética , Mutação , Fenótipo , Pólen/genética , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
5.
Plant Physiol ; 158(2): 813-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138974

RESUMO

MicroRNAs (miRNAs) and small interfering RNAs are important regulators of plant development and seed formation, yet their population and abundance in the oil crop Brassica napus are still not well understood, especially at different developmental stages and among cultivars with varied seed oil contents. Here, we systematically analyzed the small RNA expression profiles of Brassica napus seeds at early embryonic developmental stages in high-oil-content and low-oil-content B. napus cultivars, both cultured in two environments. A total of 50 conserved miRNAs and 9 new miRNAs were identified, together with some new miRNA targets. Expression analysis revealed some miRNAs with varied expression levels in different seed oil content cultivars or at different embryonic developmental stages. A large number of 23-nucleotide small RNAs with specific nucleotide composition preferences were also identified, which may present new classes of functional small RNAs.


Assuntos
Brassica napus/genética , MicroRNAs/genética , Óleos de Plantas/metabolismo , RNA de Plantas/genética , Sequência de Bases , Brassica napus/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
6.
J Exp Bot ; 60(9): 2613-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19407339

RESUMO

Sspg1d, one of endopolygalacturonases, is an important fungal effector secreted by the necrotrophic fungus Sclerotinia sclerotiorum during early infection. Using sspg1d as bait, a small C2 domain protein (designated as IPG-1) was identified by yeast two-hybrid screening of a canola cDNA library. Deletion analysis confirmed that the C-terminus of IPG-1 is responsible for its interaction with sspg1d in the yeast two-hybrid assay. The sspg1d/IPG-1 interaction was further confirmed in plant cells by a biomolecular fluorescence complementation (BiFC) assay. A transient expression assay showed that the IPG-1-GFP fusion protein was targeted to the plasma membrane and nucleus in onion epidermal cells. Following treatment with a Ca(2+) ionophore, it was distributed throughout the cytosol. Real-time PCR assay demonstrated that IPG-1 was highly induced by Sclerotinia sclerotiorum in canola leaves and stems. Southern blot analysis indicated the presence of about five homologues of IPG-1 in the canola genome. Two additional members of the IPG-1gene family were isolated by RT-PCR. Their sequence similarity with IPG-1 is as high as 95%. However, they did not interact with sspg1d in the yeast two-hybrid assay. Possible roles of IPG-1 and its association with sspg1d in the defence signalling pathway were discussed.


Assuntos
Ascomicetos/metabolismo , Brassica napus/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonase/metabolismo , Sequência de Aminoácidos , Ascomicetos/genética , Brassica napus/química , Brassica napus/genética , Brassica napus/microbiologia , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Poligalacturonase/genética , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
7.
Mol Biol Rep ; 36(8): 2375-86, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19219639

RESUMO

The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, Arabidopsis microarray was used to analyze the gene differential expression of the immature seeds 30 days after flowering of a high oil Brassica napus, H105, whose oil content was 46.04 +/- 1.42, 53.94 +/- 1.35 and 53.09 +/- 1.35% when planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m), respectively. Transcript levels of 363 genes and 421 genes were altered twofold or more for H105 planted in Xining and Lhasa compared to that in Nanjing, respectively. Together, there were 53 common up-regulated and 42 common down-regulated expression transcripts shared by H105 planted in Xining and Lhasa compared to that in Nanjing. Some important genes, such as sucrose synthase, pyruvate kinase and 6-phosphogluconate dehydrogenase which related to sugar metabolism were identified common up-regulated in higher oil content H105. These results revealed the expressional disciplinarian of correlative genes, and provided important information of the molecular genetic mechanism of oil content difference of rapeseed. In addition, these differential expression genes could be suitable as targets for genetic improvement of seed oil content.


Assuntos
Brassica napus/genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Análise de Variância , Brassica napus/metabolismo , Metabolismo dos Carboidratos , China , Perfilação da Expressão Gênica/métodos , Metabolismo dos Lipídeos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fotossíntese , Proteínas de Plantas/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA