Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2021: 4729465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900085

RESUMO

The underlying mechanisms of cerebral ischemia/reperfusion (I/R) injury are unclear. Within this study, we aimed to explore whether p53 inhibition exerts protective effects via the p53/PRAS40/mTOR pathway after stroke and its potential mechanism. Both an in vitro oxygen-glucose deprivation (OGD) model with a primary neuronal culture and in vivo stroke models (dMCAO or MCAO) were used. We found that the infarction size, neuronal apoptosis, and autophagy were less severe in p53 KO mice and p53 KO neurons after cerebral I/R or OGD/R injury. By activating the mTOR pathway, p53 knockdown alleviated cerebral I/R injury both in vitro and in vivo. When PRAS40 was knocked out, the regulatory effects of p53 overexpression or knockdown against stroke disappeared. PRAS40 knockdown could inhibit the activities of the mTOR pathway; moreover, neuronal autophagy and apoptosis were exacerbated by PRAS40 knockdown. To sum up, in this study, we showed p53 inhibition protects against neuronal I/R injury after stroke via the p53/PRAS40/mTOR pathway, which is a novel and pivotal cerebral ischemic injury signaling pathway. The induction of neuronal autophagy and apoptosis by the p53/PRAS40/mTOR pathway may be the potential mechanism of this protective effect.


Assuntos
Fosfoproteínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
2.
Oxid Med Cell Longev ; 2021: 9923331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567415

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disease, manifested by the progressive functional impairment of the midbrain nigral dopaminergic neurons. Due to the unclear underlying pathogenesis, disease-modifying drugs for PD remain elusive. In Asia, such as in China and India, herbal medicines have been used in the treatment of neurodegenerative disease for thousands of years, which recently attracted considerable attention because of the development of curative drugs for PD. In this review, we first summarized the pathogenic factors of PD including protein aggregation, mitochondrial dysfunction, ion accumulation, neuroinflammation, and oxidative stress, and the related recent advances. Secondly, we summarized 32 Chinese herbal medicines (belonging to 24 genera, such as Acanthopanax, Alpinia, and Astragalus), 22 Chinese traditional herbal formulations, and 3 Indian herbal medicines, of which the ethanol/water extraction or main bioactive compounds have been extensively investigated on PD models both in vitro and in vivo. We elaborately provided pictures of the representative herbs and the structural formula of the bioactive components (such as leutheroside B and astragaloside IV) of the herbal medicines. Also, we specified the potential targets of the bioactive compounds or extractions of herbs in view of the signaling pathways such as PI3K, NF-κB, and AMPK which are implicated in oxidative and inflammatory stress in neurons. We consider that this knowledge of herbal medicines or their bioactive components can be favorable for the development of disease-modifying drugs for PD.


Assuntos
Medicina Herbária/métodos , Doença de Parkinson/tratamento farmacológico , Fitoterapia/métodos , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/patologia
3.
Neurosci Bull ; 37(7): 985-998, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34014554

RESUMO

Medium spiny neurons (MSNs) in the striatum, which can be divided into D1 and D2 MSNs, originate from the lateral ganglionic eminence (LGE). Previously, we reported that Six3 is a downstream target of Sp8/Sp9 in the transcriptional regulatory cascade of D2 MSN development and that conditionally knocking out Six3 leads to a severe loss of D2 MSNs. Here, we showed that Six3 mainly functions in D2 MSN precursor cells and gradually loses its function as D2 MSNs mature. Conditional deletion of Six3 had little effect on cell proliferation but blocked the differentiation of D2 MSN precursor cells. In addition, conditional overexpression of Six3 promoted the differentiation of precursor cells in the LGE. We measured an increase of apoptosis in the postnatal striatum of conditional Six3-knockout mice. This suggests that, in the absence of Six3, abnormally differentiated D2 MSNs are eliminated by programmed cell death. These results further identify Six3 as an important regulatory element during D2 MSN differentiation.


Assuntos
Genes Homeobox , Neurônios , Animais , Diferenciação Celular , Corpo Estriado/metabolismo , Proteínas do Olho , Proteínas de Homeodomínio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Proteína Homeobox SIX3
4.
Cell Death Dis ; 12(3): 262, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712552

RESUMO

The striatum is structurally highly diverse, and its organ functionality critically depends on normal embryonic development. Although several studies have been conducted on the gene functional changes that occur during striatal development, a system-wide analysis of the underlying molecular changes is lacking. Here, we present a comprehensive transcriptome profile that allows us to explore the trajectory of striatal development and identify the correlation between the striatal development and Huntington's disease (HD). Furthermore, we applied an integrative transcriptomic profiling approach based on machine learning to systematically map a global landscape of 277 transcription factor (TF) networks. Most of these TF networks are linked to biological processes, and some unannotated genes provide information about the corresponding mechanisms. For example, we found that the Meis2 and Six3 were crucial for the survival of striatal neurons, which were verified using conditional knockout (CKO) mice. Finally, we used RNA-Seq to speculate their downstream targets.


Assuntos
Apoptose , Corpo Estriado/patologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Doença de Huntington/genética , Doença de Huntington/patologia , Fatores de Transcrição/genética , Transcriptoma , Animais , Estudos de Casos e Controles , Bases de Dados Genéticas , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Humanos , Aprendizado de Máquina , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fenótipo , RNA-Seq , Proteína Homeobox SIX3
5.
Chin J Integr Med ; 27(9): 705-712, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33709239

RESUMO

OBJECTIVE: To investigate the potential mechanisms of electroacupuncture (EA) to prevent ischemic stroke. METHODS: The method of middle cerebral artery occlusion (MCAO) was employed to establish a rat model of ischemic stroke. Seventy-eight Sprague-Dawley rats were divided into the sham group, MCAO + EA control (EC) group, and MCAO + EA (EA) group according to a random number table (n=26 per group). EA was applied to the acupoints of Baihui (DU 20) and Shenting (DU 24) 5 min and 6 h, respectively after the onset of MCAO. Rats in the sham and EC groups received only light isoflurane anesthesia for 30 min after MCAO. The neuroprotective effects of EA were evaluated by rota-rod test, neurological deficit scores and infarct volumes. Additionally, Nissl staining and immunostaining were performed to examine brain damage, rod formation, cellular apoptosis, and neuronal loss induced by ischemia. The activities of caspase-3, and expression levels of cofilin and p-cofilin in mitochondria and cytoplasm after ischemic injury were determined by Western blot. RESULTS: Compared with the EC group, EA significantly improved neuromotor function and cognitive ability after ischemic stroke (P<0.05 or P<0.01). Therapeutic use of EA also resulted in a significant decrease of cofilin rod formation and microtubule-associated protein-2 (MAP2) degradation in the cortical penumbra area compared with the EC rats (P<0.01). Furthermore, Western blot analysis showed that EA stimulation significantly inhibited mitochondrial translocation of cofilin and caspase-3 cleavage (P<0.05 or P<0.01). Additionally, brain damage (infarct volume and neuropathy), cellular apoptosis and neuronal loss induced by ischemia were remarkably suppressed by EA in the cortical penumbra of rats (P<0.05 or P<0.01). CONCLUSION: EA treatment after ischemic stroke may attenuate ischemic brain injury and cellular apoptosis through the regulation of mitochondrial translocation of cofilin, a novel mechanism of EA therapy.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Eletroacupuntura , Traumatismo por Reperfusão , Fatores de Despolimerização de Actina , Animais , Apoptose , Isquemia Encefálica/terapia , Ratos , Ratos Sprague-Dawley
6.
EMBO Mol Med ; 12(3): e9469, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32003121

RESUMO

Hyperhomocysteinemia is a common metabolic disorder that imposes major adverse health consequences. Reducing homocysteine levels, however, is not always effective against hyperhomocysteinemia-associated pathologies. Herein, we report the potential roles of methionyl-tRNA synthetase (MARS)-generated homocysteine signals in neural tube defects (NTDs) and congenital heart defects (CHDs). Increased copy numbers of MARS and/or MARS2 were detected in NTD and CHD patients. MARSs sense homocysteine and transmit its signal by inducing protein lysine (N)-homocysteinylation. Here, we identified hundreds of novel N-homocysteinylated proteins. N-homocysteinylation of superoxide dismutases (SOD1/2) provided new mechanistic insights for homocysteine-induced oxidative stress, apoptosis and Wnt signalling deregulation. Elevated MARS expression in developing and proliferating cells sensitizes them to the effects of homocysteine. Targeting MARSs using the homocysteine analogue acetyl homocysteine thioether (AHT) reversed MARS efficacy. AHT lowered NTD and CHD onsets in retinoic acid-induced and hyperhomocysteinemia-induced animal models without affecting homocysteine levels. We provide genetic and biochemical evidence to show that MARSs are previously overlooked genetic determinants and key pathological factors of hyperhomocysteinemia, and suggest that MARS inhibition represents an important medicinal approach for controlling hyperhomocysteinemia-associated diseases.


Assuntos
Cardiopatias Congênitas , Hiper-Homocisteinemia , Metionina tRNA Ligase/antagonistas & inibidores , Defeitos do Tubo Neural , Animais , Feminino , Cardiopatias Congênitas/prevenção & controle , Homocisteína , Humanos , Hiper-Homocisteinemia/genética , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Defeitos do Tubo Neural/prevenção & controle , Ratos , Ratos Sprague-Dawley , Estados Unidos
7.
Behav Brain Res ; 384: 112520, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32006563

RESUMO

Cerebral ischemia/reperfusion (I/R) injury is a leading cause of learning and memory dysfunction. Hydrogen sulfide (H2S) has been shown to confer neuroprotection in various neurodegenerative diseases, including cerebral I/R-induced hippocampal CA1 injury. However, the underlying mechanisms have not been completely understood. In the present study, rats were pretreated with SAM/NaHS (SAM, an H2S agonist, and NaHS, an H2S donor) only or SAM/NaHS combined with CaM (an activator of CaMKII) prior to cerebral ischemia. The Morris water maze test demonstrated that SAM/NaHS could alleviate learning and memory impairment induced by cerebral I/R injury. Cresyl violet staining was used to show the survival of hippocampal CA1 pyramidal neurons. SAM/NaHS significantly increased the number of surviving cells, whereas CaM weakened the protection induced by SAM/NaHS. The immunohistochemistry results indicated that the number of Iba1-positive microglia significantly increased after cerebral I/R. Compared with the I/R group, the number of Iba1-positive microglia in the SAM/NaHS groups significantly decreased. Co-Immunoprecipitation and immunoblotting were conducted to demonstrate that SAM/NaHS suppressed the assembly of CaMKII with the ASK1-MKK3-p38 signal module after cerebral I/R, which decreased the phosphorylation of p38. In contrast, CaM significantly inhibited the effects of SAM/NaHS. Taken together, the results suggested that SAM/NaHS could suppress cerebral I/R injury by downregulating p38 phosphorylation via decreasing the assembly of CaMKII with the ASK1-MKK3-p38 signal module.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Calmodulina/farmacologia , Sulfeto de Hidrogênio/metabolismo , AVC Isquêmico/metabolismo , Transtornos da Memória/metabolismo , Traumatismo por Reperfusão/metabolismo , S-Adenosilmetionina/farmacologia , Sulfetos/farmacologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Regulação para Baixo , AVC Isquêmico/fisiopatologia , Aprendizagem/efeitos dos fármacos , MAP Quinase Quinase 3/efeitos dos fármacos , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 5/efeitos dos fármacos , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/fisiopatologia , Proteínas dos Microfilamentos/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Teste do Labirinto Aquático de Morris , Fosforilação , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Traumatismo por Reperfusão/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Behav Brain Res ; 359: 528-535, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412737

RESUMO

Heme oxygenase (HO-1), which may be induced by Cobaltic protoporphyrin IX chloride (CoPPIX) or Rosiglitazone (Ros), is a neuroprotective agent that effectively reduces ischemic stroke. Previous studies have shown that the neuroprotective mechanisms of HO-1 are related to JNK signaling. The expression of HO-1 protects cells from death through the JNK signaling pathway. This study aimed to ascertain whether the neuroprotective effect of HO-1 depends on the assembly of the MLK3-MKK7-JNK3 signaling module scaffolded by JIP1 and further influences the JNK signal transmission through HO-1. Prior to the ischemia-reperfusion experiment, CoPPIX was injected through the lateral ventricle for 5 consecutive days or Ros was administered via intraperitoneal administration in the week prior to transient ischemia. Our results demonstrated that HO-1 could inhibit the assembly of the MLK3-MKK7-JNK3 signaling module scaffolded by JIP1 and could ultimately diminish the phosphorylation of JNK3. Furthermore, the inhibition of JNK3 phosphorylation downregulated the level of p-c-Jun and elevated neuronal cell death in the CA1 of the hippocampus. Taken together, these findings suggested that HO-1 could ameliorate brain injury by regulating the MLK3-MKK7-JNK3 signaling module, which was scaffolded by JIP1 and JNK signaling during cerebral ischemia/reperfusion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Isquemia Encefálica/enzimologia , Heme Oxigenase (Desciclizante)/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/enzimologia , Região CA1 Hipocampal/patologia , Morte Celular/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Rosiglitazona/farmacologia , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
10.
Development ; 145(14)2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29967281

RESUMO

Dopamine receptor DRD1-expressing medium spiny neurons (D1 MSNs) and dopamine receptor DRD2-expressing medium spiny neurons (D2 MSNs) are the principal projection neurons in the striatum, which is divided into dorsal striatum (caudate nucleus and putamen) and ventral striatum (nucleus accumbens and olfactory tubercle). Progenitors of these neurons arise in the lateral ganglionic eminence (LGE). Using conditional deletion, we show that mice lacking the transcription factor genes Sp8 and Sp9 lose virtually all D2 MSNs as a result of reduced neurogenesis in the LGE, whereas D1 MSNs are largely unaffected. SP8 and SP9 together drive expression of the transcription factor Six3 in a spatially restricted domain of the LGE subventricular zone. Conditional deletion of Six3 also prevents the formation of most D2 MSNs, phenocopying the Sp8/9 mutants. Finally, ChIP-Seq reveals that SP9 directly binds to the promoter and a putative enhancer of Six3 Thus, this study defines components of a transcription pathway in a regionally restricted LGE progenitor domain that selectively drives the generation of D2 MSNs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Fatores de Transcrição/genética , Proteína Homeobox SIX3
11.
Nature ; 555(7696): 377-381, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513649

RESUMO

New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved.


Assuntos
Hipocampo/citologia , Neurogênese , Neurônios/citologia , Adolescente , Adulto , Idoso , Animais , Animais Recém-Nascidos , Contagem de Células , Proliferação de Células , Criança , Pré-Escolar , Giro Denteado/citologia , Giro Denteado/embriologia , Epilepsia/patologia , Feminino , Desenvolvimento Fetal , Voluntários Saudáveis , Hipocampo/anatomia & histologia , Hipocampo/embriologia , Humanos , Lactente , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais/citologia , Adulto Jovem
12.
Front Genet ; 9: 651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30894873

RESUMO

This present research work reports the comparative analysis of the entire nucleotide sequence of mitochondrial genomes of Serranochromis robustus and Buccochromis nototaenia and phylogenetic analyses of their protein-coding genes in order to establish their phylogenetic relationship within Cichlids. The mitochondrial genomes of S. robustus and B. nototaenia are 16,583 and 16,580 base pairs long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and one control region (D-loop) which is 888 and 887 base pairs long, respectively, showing the same gene order and identical number of gene or regions with other well-elucidated mitogenomes of Cichlids. However, with exception of cytochrome-c oxidase subunit-1 (COX-1) gene, all the identified PCGs were initiated by ATG-codons. Structurally, 11 tRNA genes in B. nototaenia species and 9 tRNA genes in S. robustus species, folded into typical clover-leaf secondary structure created by the regions of self-complementarity within tRNA. All the 22 tRNA genes in both species lack variable loop. Moreover, 28 genes which include 12-protein-coding genes are encoded on the H-strand and the remaining 9 genes including one protein-coding gene are encoded on the L-strand. Thirteen sequences of concatenated mitochondrial protein-coding genes were aligned using MUSCLE, and the phylogenetic analyses performed using maximum likelihood and Bayesian inference showed that S. robustus and B. nototaenia had a broad phylogenetic relationship. These results may be a useful tool in resolving higher-level relationships in organisms and a useful dataset for studying the evolution of the Cichlidae mitochondrial genome, since Cichlids are well-known model species in the study of evolutionary biology, because of their extreme morphological, biogeographical, parental care behavior for eggs and larvae and phylogenetic diversities.

13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(3): 340-341, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26714218

RESUMO

The Placidochromis longimanus (P. longimanus), one species of Cichlidae, resides in the Lake Malawi in East Africa. In present study, for the first time, we reported the complete mitochondrial genome of P. longimanus, which has 16 581 bp in length, including 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes, and 1 control zone. Moreover, its GC content is 45.99% (27.44% A, 26.58% T, 30.11% C, and 15.87% G), similar to that of Astatotilapia calliptera (the GC content of 45.90%). We further made the phylogenetic tree on the complete mitochondrial genomes of the above two species and other 11 closely related species to show their phylogenic relationship. The above results would facilitate our understanding of the evolution of Cichlidae mitochondrial genome.


Assuntos
Genoma Mitocondrial/genética , Animais , Composição de Bases/genética , Ciclídeos/genética , DNA Mitocondrial/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Análise de Sequência de DNA
14.
Mitochondrial DNA B Resour ; 1(1): 919-920, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33473678

RESUMO

In the present study, for the first time, we reported the complete mitochondrial genome of Lethrinops lethrinus, which is 16,582 bp in length, including 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes and a control zone. Moreover, its GC content is 45.99% (27.42% A, 26.59% T, 30.10% C, and 15.88% G), similar to that of Alticorpus geoffreyi (GC content of 45.82%). We further made the phylogenetic tree on the complete mitochondrial genomes of the above two species and other 12 closely related species to show their phylogenic relationship. The above results would facilitate our understanding of the evolution of Cichlidae mitochondrial genome.

15.
Mitochondrial DNA B Resour ; 2(1): 354-355, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-33490450

RESUMO

The Cyathochromis obliquidens, the only member of Cyathochromis genus, is widely spread in Africa. In this study, we firstly reported the complete mitochondrial genome of C. obliquidens. The whole mitochondrial genome is 16,581 bp in length, including 2 ribosomal RNA genes, 22 transfer RNA genes and 13 protein-coding genes. Its GC content is 45.94%, similar to the other species from the same family, like Alticorpus geoffreyi (45.82%). We also analyzed the complete mitochondrial genome of C. obliquidens and its phylogenic relationship with other 14 related species, which would help our better understanding of the evolution of Cichlidae mitochondrial genome.

16.
Brain Res ; 1653: 67-74, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27769787

RESUMO

Cilostazol(CTL) is a phosphodiesterase inhibitor, which has been widely used as anti-platelet agent. It also has preventive effects on various central nervous system (CNS) diseases, including ischemic stroke, Parkinson's disease and Alzheimer disease. However, the molecular mechanism underlying the protective effects of CTL is still unclear, and whether CTL can prevent I/R induced cognitive deficit has not been reported. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The open field tasks and Morris water maze were used to assess the effect of CTL on anxiety-like behavioral and cognitive impairment after I/R. Western blotting were performed to examine the expression of related proteins, and HE-staining was used to detect the percentage of neuronal death in the hippocampal CA1 region. Here we found that CTL significantly improved cognitive deficits and the behavior of rats in Morris water maze and open field tasks (P<0.05). HE staining results showed that CTL could significantly protect CA1 neurons against cerebral I/R (P<0.05). Additionally, Akt1 phosphorylation levels were evidently up-regulated (P<0.05), while the activation of JNK3, which is an important contributor to I/R-induced neuron apoptosis, was reduced by CTL after I/R (P<0.05), and caspase-3 levels were also decreased by CTL treatment. Furthermore, all of CTL's protective effects were reversed by LY294002, which is a PI3K/Akt1 inhibitor. Taken together, our results suggest that CTL could protect hippocampal neurons and ameliorate the impairment of learning/memory abilities and locomotor/ exploratory activities in ischemic stroke via a PI3K-Akt1/JNK3/caspase-3 dependent mechanism.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Tetrazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Isquemia Encefálica/complicações , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Cilostazol , Transtornos Cognitivos/enzimologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia
17.
FEBS J ; 283(22): 4149-4162, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27696686

RESUMO

Hyperhomocysteinemia, which is characterized by elevated blood levels of the non-protein amino acid homocysteine (Hcy), is an independent risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases and birth defects. The incorporation of homocysteine into proteins, known as protein N-homocysteinylation, has been considered a major mechanism that contributes to hyperhomocysteinemia. However, the process of dehomocysteinylation, the N-homocysteinylation substrates and the regulatory enzyme(s) remain largely unknown. In this study, we observed that the dehomocysteinylation reaction is a spontaneous process that can be inhibited by blocking -SH groups, which have been demonstrated to be critical for non-enzymatic dehomocysteinylation reactions. We also report that CobB, a known Sir2-like bacterial lysine deacetylase, catalyzes lysine dehomocysteinylation reactions both in vitro and in vivo. Our work provides insight into how this non-enzymatic modification might be removed from affected proteins, supplies potential targets for developing identification methods for N-homocysteine proteins, and identifies CobB as the first prokaryotic dehomocysteinylation enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Histona Desacetilases/metabolismo , Homocisteína/metabolismo , Sirtuína 2/metabolismo , Animais , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Bovinos , Células HEK293 , Homocisteína/análogos & derivados , Homocisteína/química , Humanos , Immunoblotting , Cinética , Lisina/metabolismo , Camundongos , Modelos Químicos , Estrutura Molecular , Mutação , Células NIH 3T3 , Processamento de Proteína Pós-Traducional , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
18.
J Neuroimmunol ; 298: 1-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27609268

RESUMO

Previous studies have demonstrated that lycopene possesses anti-inflammatory properties in the central nervous system. However, the potential role and the molecular mechanisms of lycopene in lipopolysaccharide (LPS)-challenge inflammation and depression-like behaviors has not been clearly investigated. The present study aimed to assess the effects and the potential mechanisms of lycopene on LPS-induced depression-like behaviors. Lycopene was orally administered (60mg/kg) every day for seven days followed by intraperitoneal LPS injection (1mg/kg). The Forced swim test and tail suspension test were used to detect changes in the depression-like behaviors. ELISA was used to measure the expression of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) in the plasma. Immunoblotting was performed to measure the expression of interleukin-1ß (IL-1ß) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that pretreatment with lycopene could ameliorate depression-like behaviors. Moreover, lycopene relieved neuronal cell injury in hippocampal CA1 regions. Furthermore, lycopene decreased LPS-induced expression of IL-1ß and HO-1 in the hippocampus together with decreasing level of IL-6 and TNF-α in the plasma. Taken together, these results suggest that lycopene can attenuate LPS-induced inflammation and depression-like behaviors, which may be involved in regulating HO-1 in the hippocampus.


Assuntos
Antioxidantes/uso terapêutico , Carotenoides/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Encefalite/complicações , Heme Oxigenase-1/metabolismo , Animais , Depressão/sangue , Encefalite/induzido quimicamente , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-6/sangue , Lipopolissacarídeos/toxicidade , Licopeno , Camundongos , Camundongos Endogâmicos ICR , Fator de Necrose Tumoral alfa/sangue
19.
Cell Mol Neurobiol ; 36(7): 1087-95, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27015680

RESUMO

Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)-Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague-Dawley rats. Immunohistochemical staining and Western blotting were performed to examine the expression of related proteins, and TUNEL-staining was used to detect the percentage of neuronal apoptosis in the hippocampal CA1 region. The results showed that BP could significantly protect neurons against cerebral I/R-induced damage. Furthermore, the expression of p-JNK, p-Bcl2, p-c-Jun, FasL, and cleaved-caspase3 was also decreased in the rats treated with BP. In summary, our results imply that BP could remarkably improve the survival of CA1 pyramidal neurons in I/R-induced brain injury and inhibit the JNK-Caspase3 signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Benzofuranos/química , Isquemia Encefálica/metabolismo , Caspase 3/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Neurônios/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Brain Res ; 1634: 140-149, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26794251

RESUMO

Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3 min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6 min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway.


Assuntos
Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Precondicionamento Isquêmico , Óxido Nítrico Sintase Tipo I/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína 4 Homóloga a Disks-Large , Proteína Ligante Fas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA