Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1335404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361743

RESUMO

Introduction: Menstrual blood-derived stem cells (MenSCs) are vital in treating many degenerative and traumatic disorders. However, the underlying molecular mechanisms remain obscure in MenSCs-treating spinal cord injury (SCI) rats. Methods: MenSCs were adopted into the injured sites of rat spinal cords at day 7 post surgery and the tissues were harvested for total RNA sequencing analysis at day 21 after surgery to investigate the expression patterns of RNAs. The differentially expressed genes (DEGs) were analyzed with volcano and heatmap plot. DEGs were sequentially analyzed by weighted gene co-expression network, functional enrichment, and competitive endogenous RNAs (ceRNA) network analysis. Next, expression of selected miRNAs, lncRNAs, circRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics packages and extra databases were enrolled to scoop the genes functions and their interaction relationships. Results: A total of 89 lncRNAs, 65 circRNAs, 120 miRNAs and 422 mRNAs were significantly upregulated and 65 lncRNAs, 72 circRNAs, 74 miRNAs, and 190 mRNAs were significantly downregulated in the MenSCs treated rats compared to SCI ones. Current investigation revealed that MenSCs treatment improve the recovery of the injured rats and the most significantly involved pathways in SCI regeneration were cell adhesion molecules, nature killer cell mediated cytotoxicity, primary immunodeficiency, chemokine signaling pathway, T cell receptor signaling pathway and B cell receptor signaling pathway. Moreover, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA network of SCI was constructed. Finally, the protein-protein interaction (PPI) network was constructed using the top 100 DE mRNAs. The constructed PPI network included 47 nodes and 70 edges. Discussion: In summary, the above results revealed the expression profile and potential functions of differentially expressed (DE) RNAs in the injured spinal cords of rats in the MenSCs-treated and SCI groups, and this study may provide new clues to understand the mechanisms of MenSCs in treating SCI.

2.
Aging (Albany NY) ; 16(5): 4445-4468, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38421251

RESUMO

Most cancers have a downregulation of Fidgetin (FIGN), which has been linked to tumor growth. However, there aren't many papers that mention FIGN's connection to hepatocellular carcinoma (HCC). Here, FIGN expression in HCC tissues was markedly reduced as compared to nearby normal liver tissues. According to univariate and multivariate Cox regression, it served as an independent predictor of survival outcomes. Patients with high levels of FIGN expression had a worse outcome. FIGN was shown to be engaged in immune-related pathways and to have a positive correlation with immunological score and immune cells according to KEGG pathway analysis. In HCC patients, FIGN was substantially linked with immunological checkpoints and the hot tumor state. Additionally, immunotherapy and chemotherapy showed a significant therapeutic response in HCC patients with low FIGN expression. This research revealed that FIGN expression was tightly related to hepatoma immunity and might be employed as a biomarker to predict patient prognosis and guide medication.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Imunoterapia , Regulação para Baixo , Microambiente Tumoral , Prognóstico
3.
Exp Neurol ; 373: 114682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199509

RESUMO

Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Neurônios , Quimiocinas , Medula Espinal
4.
Commun Biol ; 5(1): 1018, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167813

RESUMO

The formation of wound epithelium initiates regeneration of amputated tail in Gekko japonicus. Energy metabolism is indispensable for the growth of living creatures and typically influenced by temperature. In this study, we reveal that low temperature lowers energy metabolism level and inhibits the regeneration of amputated tails of Gekko japonicus. We further find that low temperature attenuates the activation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) in regenerated tissues upon injury signals, and the inhibition of Akt hinders proliferation of the wound epithelium. Additionally, wingless/integrated (Wnt) inhibition suppresses epithelium proliferation and formation by inhibiting Akt activation. Finally, low temperature elevates the activity of adenylate-activated kinase (AMPK) pathway and in turn attenuates wound epithelium formation. Meanwhile, either mTOR downregulation or AMPK upregulation is associated with worse wound epithelium formation. Summarily, low temperature restricts wound epithelium formation by influencing energy sensory pathways including Akt/mTOR and AMPK signaling, which is also modulated by injury induced Wnt signal. Our results provide a mechanism that incorporates the injury signals with metabolic pathway to facilitate regeneration.


Assuntos
Lagartos , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Metabolismo Energético , Epitélio/metabolismo , Mamíferos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
J Biomater Sci Polym Ed ; 33(16): 2124-2144, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835455

RESUMO

Spinal cord injury (SCI) leads to severe loss of motor and sensory functions, and the rehabilitation of SCI is a worldwide problem. Tissue-engineered scaffolds offer new hope for SCI patients, while the newly developed materials encountered a challenge in modeling the microenvironment around the lesion site. We constructed a new composite scaffold by mixing decellularized spinal cord extracellular matrix (dECM) with gelatin methacryloyl (GelMA). The dECM, as a natural biological material, retained a large number of proteins and growth factors related to neurogenesis. GelMA was a photopolymerizable material, harbored a polymer network structure, soft texture, certain shape and plenty of water. The viability, proliferation, and differentiation of neural stem cells (NSCs) on the composite scaffold were evaluated by cell count kit-8 (CCK8), Live/Dead assay, phalloidin staining, 5-Ethynyl-2'-deoxyurdine (EdU), immunofluorescence staining and western blot. The Live/Dead assay, phalloidin staining, EdU, and CCK8 assay showed that the composite scaffold had good biocompatibility and provided better support for proliferation of NSCs. Results of immunocytochemistry and western blot showed that the composite scaffolds promoted the specific differentiation of NSCs into neuron cells. Together, this dECM/GelMA composite scaffold can be used as a cell culture coating, the isolated NSCs seeded on the surface of composite scaffold expressed neuronal markers and assumed neuronal morphology. Our work provided a new method that would be widely used in tissue engineering of SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Faloidina/metabolismo , Gelatina , Alicerces Teciduais/química , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Diferenciação Celular , Medula Espinal/patologia
6.
J Mater Chem B ; 10(30): 5753-5764, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35838078

RESUMO

Spinal cord injury (SCI), as a serious disabling disease, is still haunted by lacking of effective treatments. We previously found that transplantation of menstrual blood-derived mesenchymal stem cells (MenSCs) promoted axon regeneration in rats with SCI, while the abominable microenvironment after the SCI inhibited the survival of stem cells after transplantation. Biomaterials can support the activity of stem cells and accelerate the functional reconstruction of the injured spinal cord. In this study, we constructed a novel composite scaffold consisting of the decellularized spinal cord extracellular matrix-gel (DSCG) and the GelMA hydrogel, which harbored high water retention, wettability, degradability and soft mechanical property. In vitro, the DSCG/GelMA composite scaffold provided a dual bionic microenvironment with optimized bioactive components and favorable microstructures for the adhesion, proliferation and differentiation of MenSCs. After that, we prepared MenSC-encapsulated DSCG/GelMA composite scaffolds to bridge the 2 mm gap in rats with completely transected SCI. The in vivo results showed that the combined use of the DSCG/GelMA composite scaffold with MenSCs improved the motor function, reduced the inflammatory response, promoted neuronal differentiation, and inhibited the proliferation of reactive astrocytes after spinal cord injury. Altogether, our study provided a promising novel therapeutic option of using bioactive materials synergistic with stem cells for the treatment of SCI.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Animais , Axônios , Matriz Extracelular , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Regeneração Nervosa/fisiologia , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico , Células-Tronco , Alicerces Teciduais/química
7.
Neurochem Res ; 47(6): 1679-1691, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35320460

RESUMO

Spasticity is a typical consequence after spinal cord injury (SCI). The critical reasons are reducing the synthesis of Gamma-Aminobutyric Acid (GABA), glycine and potassium chloride co-transporter 2 (KCC2) inside the distal spinal cord. The current work aimed to test whether exercise training could increase the expression of glutamic acid decarboxylase 65/67 (GAD-65/67, the key enzymes in GABA synthesis) and KCC2 in the distal spinal cord via tropomyosin-related kinase B (TrkB) signaling. The experimental rats were randomly assigned to the following five groups: Sham, SCI/phosphate-buffered saline (PBS), SCI-treadmill training (TT)/PBS, SCI/TrkB-IgG, and SCI-TT/TrkB-IgG. After that, the model of T10 contusion SCI was used, then TrkB-IgG was used to prevent TrkB activity at 7 days post-SCI. Body weight-supported treadmill training started on the 8th day post-SCI for four weeks. The Hmax/Mmax ratio and the rate-dependent depression of H-reflex were used to assess the excitability of spinal motoneuronal networks. Western blotting and Immunohistochemistry techniques were utilized for measuring the expression of GAD-65, GAD-67, and KCC2. The findings revealed that exercise training could reduce motoneuronal excitability and boost GAD-65, GAD-67, and KCC2 production in the distal region of the spinal cord after SCI. The effects of exercise training were decreased after the TrkB signaling was inhibited. The present exploration demonstrated that exercise training increases GAD-65, GAD-67, and KCC2 expression in the spinal cord via TrkB signaling and that this method could also improve rats with motoneuronal hyperexcitability and spasticity induced by incomplete SCI.


Assuntos
Traumatismos da Medula Espinal , Simportadores , Animais , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunoglobulina G/metabolismo , Espasticidade Muscular/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Simportadores/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
In Vitro Cell Dev Biol Anim ; 55(2): 104-112, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617572

RESUMO

Human menstrual blood-derived mesenchymal stem cells (MenSCs) hold great promise for regenerative medicine. Here, H2O2-associated damage in H9c2 cells was employed as an in vitro ischemia-reperfusion model, and the transwell system was used to explore the beneficial effects of MenSCs on the H2O2-induced damage of myocardial H9c2 cells. H2O2 treatment resulted in decreased viability and migration rate, with increased apoptosis levels in cells. By contrast, upon co-culture with MenSCs, H9c2 cell viability and migration were increased, whereas the apoptotic rate decreased. Additionally, western blot and qRT-PCR showed that MenSCs mediated the anti-apoptotic role by downregulating the pro-apoptotic genes Bax and caspase-3, while upregulating the anti-apoptotic effector Bcl-2. Furthermore, co-culture with MenSCs resulted in elevated expression of N-cadherin after H2O2 treatment. These findings indicate that MenSCs protect H9c2 cells against H2O2-associated programmed cell death and would help develop therapeutic tools for cardiomyocyte apoptosis associated with oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Células Sanguíneas/citologia , Citoproteção/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Menstruação/sangue , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos
9.
Int J Clin Exp Pathol ; 11(5): 2691-2698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31938384

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Tumor recurrence and metastasis are major factors that contribute to the poor outcome of patients with HCC. However, it is difficult to predict the prognosis of hepatocellular carcinoma. Trafficking Protein Particle Complex 4 (Trappc4), is associated with tumorigenesis. The present study aimed to detect Trappc4 expression in HCC and its association with clinicopathological patient data. More importantly, this study reveals the relationship between Trappc4 and the prognosis of hepatocellular carcinoma. A total of 148 HCC tissues were assessed for expression of Trappc4 mRNA and protein with (reverse transcription polymerase chain reaction) RT-PCR (n=36), Western blotting (n=4) and immunohistochemistry (n=148), respectively. The data show that Trappc4 mRNA and protein are expressed at low levels in HCC tissues compared to adjacent tissues. Immunohistochemical analysis revealed that 148 cases of HCC showed different degrees of positive expression. Statistical analysis showed that expression of Trappc4 was associated with histological differentiation, TNM stage, and vascular invasion (P < 0.05), but did not correlate with the patient's age, gender, tumor size (P > 0.05). Most importantly, HCC patients with low expression of Trappc4 had shorter survival time compared to patients with high expression. Trappc4 might be involved in the pathogenesis of HCC and could be an important prognostic marker in HCC patients.

10.
Onco Targets Ther ; 10: 4753-4763, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033588

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide, and it occurs at a higher frequency in males. HOXD-AS1, an important cancer-associated long noncoding RNA (lncRNA), contributes to the development and progression of several cancers. However, the exact roles of HOXD-AS1 in NSCLC progression are still unknown. Here, we investigated the underlying mechanisms of HOXD-AS1 in human NSCLC tissues. We found that lncRNA HOXD-AS1 was specifically upregulated (P<0.001) in NSCLC tissues and promoted cancer cell growth by targeting miR-147a. Moreover, HOXD-AS1 expression positively correlated with NSCLC clinical pathologic characteristics (tumor size, P=0.006; tumor stage, P=0.044; recurrence, P=0.031) and survival rate (P=0.003). HOXD-AS1 knockdown reduced proliferation and promoted apoptosis of NSCLC cells. The dual-luciferase reporter assay showed that HOXD-AS1 could negatively regulate the expression of miR-147a. miR-147a inhibition abrogated the effect of HOXD-AS1 knockdown on the proliferation and apoptosis of NSCLC cells. Furthermore, HOXD-AS1 positively regulated the expression of pRB (a tumor suppressor protein) in NSCLC cells. Taken together, our data indicated that HOXD-AS1 might be an oncogenic lncRNA that promotes proliferation of NSCLC and could be a therapeutic target in NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA