Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Viruses ; 16(3)2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543767

RESUMO

Bovine parainfluenza virus type 3 (BPIV-3) is one of the major pathogens of the bovine respiratory disease complex (BRDC). BPIV-3 surveillance in China has been quite limited. In this study, we used PCR to test 302 cattle in China, and found that the positive rate was 4.64% and the herd-level positive rate was 13.16%. Six BPIV-3C strains were isolated and confirmed by electron microscopy, and their titers were determined. Three were sequenced by next-generation sequencing (NGS). Phylogenetic analyses showed that all isolates were most closely related to strain NX49 from Ningxia; the genetic diversity of genotype C strains was lower than strains of genotypes A and B; the HN, P, and N genes were more suitable for genotyping and evolutionary analyses of BPIV-3. Protein variation analyses showed that all isolates had mutations at amino acid sites in the proteins HN, M, F, and L. Genetic recombination analyses provided evidence for homologous recombination of BPIV-3 of bovine origin. The virulence experiment indicated that strain Hubei-03 had the highest pathogenicity and could be used as a vaccine candidate. These findings apply an important basis for the precise control of BPIV-3 in China.


Assuntos
Vírus da Parainfluenza 3 Bovina , Vírus da Parainfluenza 3 Humana , Animais , Bovinos , Virulência , Filogenia , Prevalência , Vírus da Parainfluenza 3 Bovina/genética , China/epidemiologia
2.
Pathogens ; 12(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36986405

RESUMO

Golden snub-nosed monkeys (Rhinopithecus roxellanae) belong to Class A, the highest level of endangered primate species. Exploring the infection status of potential pathogens in golden snub-nosed monkeys is important for controlling associated diseases and protecting this species. The objective of this study was to investigate the seroprevalence for a number of potential pathogens and the prevalence of fecal adenovirus and rotavirus. A total of 283 fecal samples were collected from 100 golden snub-nosed monkeys in December 2014, June 2015, and January 2016; 26 blood samples were collected from 26 monkeys in June 2014, June 2015, January 2016 and November 2016 at Shennongjia National Reserve in Hubei, China. The infection of 11 potential viral diseases was examined serologically using an Indirect Enzyme-linked Immunosorbent Assay (iELISA) and Dot Immunobinding Assays (DIA), while the whole blood IFN-γ in vitro release assay was used to test tuberculosis (TB). In addition, fecal Adenovirus and Rotavirus were detected using Polymerase Chain Reaction (PCR). As a result, the Macacine herpesvirus-1 (MaHV-1), Golden snub-nosed monkey cytomegalovirus (GsmCMV), Simian foamy virus (SFV) and Hepatitis A virus (HAV) were detected with the seroprevalence of 57.7% (95% CI: 36.9, 76.6), 38.5% (95% CI: 20.2, 59.4), 26.9% (95% CI: 11.6, 47.8), and 7.7% (95% CI: 0.0, 84.2), respectively. Two fecal samples tested positive for Adenovirus (ADV) by PCR, with a prevalence of 0.7% (95% CI: 0.2, 2.5), and further, the amplification products were sequenced. Phylogenetic analysis revealed that they belonged to the HADV-G group. However, other pathogens, such as Coxsackievirus (CV), Measles virus (MeV), Rotavirus (RV), Simian immunodeficiency virus (SIV), Simian type D retroviruses (SRV), Simian-T-cell lymphotropic virus type 1 (STLV-1), Simian varicella virus (SVV), Simian virus 40 (SV40) and Mycobacterium tuberculosis complex (TB) were negative in all samples. In addition, a risk factor analysis indicated that the seroprevalence of MaHV-1 infection was significantly associated with old age (≥4 years). These results have important implications for understanding the health status and conservation of the endangered golden snub-nosed monkey population at Shennongjia Nature Reserve.

3.
BMC Genomics ; 24(1): 62, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737703

RESUMO

BACKGROUND: The snub-nosed monkey (Rhinopithecus roxellanae) is an endangered animal species mainly distributed in China and needs to be protected. Gut microbiome is an important determinant of animal health and population survival as it affects the adaptation of the animals to different foods and environments under kinetic changes of intrinsic and extrinsic factors. Therefore, this study aimed to elucidate gut fecal microbiome profiles of snub-nosed monkeys affected by several extrinsic and intrinsic factors, including raising patterns (captive vs. wild), age, sex, and diarrheal status to provide a reference for making protection strategies. RESULTS: The 16S rRNA gene sequencing was firstly used to pre-check clustering of 38 fecal samples from the monkeys including 30 wild and 8 captive (5 healthy and 3 diarrheal) from three Regions of Shennongjia Nature Reserve, Hubei Province, China. Then the 24 samples with high-quality DNA from 18 wild and 6 captive (4 healthy and 2 diarrheal) monkeys were subjected to shotgun metagenomic sequencing to characterize bacterial gut microbial communities. We discovered that the raising pattern (captive and wild) rather than age and sex was the predominant factor attributed to gut microbiome structure and proportionality. Wild monkeys had significantly higher bacterial diversity and lower Bacteroidetes/Firmicutes ratios than captive animals. Moreover, the gut microbiomes in wild healthy monkeys were enriched for the genes involved in fatty acid production, while in captive animals, genes were enriched for vitamin biosynthesis and metabolism and amino acid biosynthesis from carbohydrate intermediates. Additionally, a total of 37 antibiotic resistant genes (ARG) types were detected. Unlike the microbiome diversity, the captive monkeys have a higher diversity of ARG than the wild animals. CONCLUSION: Taken together, we highlight the importance of self-reprogramed metabolism in the snub-nosed monkey gut microbiome to help captive and wild monkeys adapt to different intrinsic and extrinsic environmental change.


Assuntos
Colobinae , Microbioma Gastrointestinal , Presbytini , Animais , Presbytini/genética , Microbioma Gastrointestinal/genética , Colobinae/genética , Colobinae/microbiologia , RNA Ribossômico 16S/genética , Espécies em Perigo de Extinção , Bactérias/genética , Diarreia
4.
Front Vet Sci ; 9: 1008107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467650

RESUMO

Bovine viral diarrhea virus (BVDV) is an important livestock viral pathogen responsible for causing significant economic losses. The emerging and novel BVDV isolates are clinically and biologically important, as there are highly antigenic diverse and pathogenic differences among BVDV genotypes. However, no study has yet compared the virulence of predominant genotype isolates (BVDV-1a, 1b, and 1m) in China and the emerging genotype isolate BVDV-1v. The serological relationship among these genotypes has not yet been described. In this study, we isolated three BVDV isolates from calves with severe diarrhea, characterized as BVDV-1a, 1m, and novel 1v, based on multiple genomic regions [including 5-untranslated region (5'-UTR), Npro, and E2] and the phylogenetic analysis of nearly complete genomes. For the novel genotype, genetic variation analysis of the E2 protein of the BVDV-1v HB-03 strain indicates multiple amino acid mutation sites, including potential host cell-binding sites and neutralizing epitopes. Recombination analysis of the BVDV-1v HB-03 strain hinted at the possible occurrence of cross-genotypes (among 1m, 1o, and 1q) and cross-geographical region transmission events. To compare the pathogenic characters and virulence among these BVDV-1 genotypes, newborn calves uninfected with common pathogens were infected intranasally with BVDV isolates. The calves infected with the three genotype isolates show different symptom severities (diarrhea, fever, slowing weight gain, virus shedding, leukopenia, viremia, and immune-related tissue damage). In addition, these infected calves also showed bovine respiratory disease complexes (BRDCs), such as nasal discharge, coughing, abnormal breathing, and lung damage. Based on assessing different parameters, BVDV-1m HB-01 is identified as a highly virulent strain, and BVDV-1a HN-03 and BVDV-1v HB-03 are both identified as moderately virulent strains. Furthermore, the cross-neutralization test demonstrated the antigenic diversity among these Chinese genotypes (1a, 1m, and 1v). Our findings illustrated the genetic evolution characteristics of the emerging genotype and the pathogenic mechanism and antigenic diversity of different genotype strains, These findings also provided an excellent vaccine candidate strain and a suitable BVDV challenge strain for the comprehensive prevention and control of BVDV.

6.
Front Cell Infect Microbiol ; 12: 855731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646746

RESUMO

Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.


Assuntos
Infecções por Mycoplasma , Mycoplasma , Animais , Mycoplasma/genética , Virulência/genética , Fatores de Virulência/genética
7.
Front Vet Sci ; 9: 1079359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601329

RESUMO

Proteomics is playing an increasingly important role in identifying pathogens, emerging and re-emerging infectious agents, understanding pathogenesis, and diagnosis of diseases. Recently, more advanced and sophisticated proteomics technologies have transformed disease diagnostics and vaccines development. The detection of pathogens is made possible by more accurate and time-constrained technologies, resulting in an early diagnosis. More detailed and comprehensive information regarding the proteome of any noxious agent is made possible by combining mass spectrometry with various gel-based or short-gun proteomics approaches recently. MALDI-ToF has been proved quite useful in identifying and distinguishing bacterial pathogens. Other quantitative approaches are doing their best to investigate bacterial virulent factors, diagnostic markers and vaccine candidates. Proteomics is also helping in the identification of secreted proteins and their virulence-related functions. This review aims to highlight the role of cutting-edge proteomics approaches in better understanding the functional genomics of pathogens. This also underlines the limitations of proteomics in bacterial secretome research.

8.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424158

RESUMO

Bovine astrovirus (BoAstV) belongs to genus Mamastravirus (MAstV). It can be detected in the faeces of both diarrhoeal and healthy calves. However, its prevalence, genetic diversity, and association with cattle diarrhoea are poorly understood. In this study, faecal samples of 87 diarrhoeal and 77 asymptomatic calves from 20 farms in 12 provinces were collected, and BoAstV was detected with reverse transcription-polymerase chain reaction (RT-PCR). The overall prevalence rate of this virus in diarrhoeal and asymptomatic calves was 55.17 % (95 % CI: 44.13, 65.85 %) and 36.36 % (95 % CI: 25.70, 48.12 %), respectively, indicating a correlation between BoAstV infection and calf diarrhoea (OR=2.15, P=0.024). BoAstV existed mainly in the form of co-infection (85.53 %) with one to five of nine viruses, and there was a strong positive correlation between BoAstV co-infection and calf diarrhoea (OR=2.83, P=0.004). Binary logistic regression analysis confirmed this correlation between BoAstV co-infection and calf diarrhoea (OR=2.41, P=0.038). The co-infection of BoAstV and bovine rotavirus (BRV) with or without other viruses accounted for 70.77 % of all the co-infection cases. The diarrhoea risk for the calves co-infected with BoAstV and BRV was 8.14-fold higher than that for the calves co-infected with BoAstV and other viruses (OR=8.14, P=0.001). Further, the co-infection of BoAstV/BRV/bovine kobuvirus (BKoV) might increase the risk of calf diarrhoea by 14.82-fold, compared with that of BoAstV and other viruses (OR=14.82, P <0.001). Then, nearly complete genomic sequences of nine BoAstV strains were assembled by using next-generation sequencing (NGS) method. Sequence alignment against known astrovirus (AstV) strains at the levels of both amino acids and nucleotides showed a high genetic diversity. Four genotypes were identified, including two known genotypes MAstV-28 (n=3) and MAstV-33 (n=2) and two novel genotypes designated tentatively as MAstV-34 (n=1) and MAstV-35 (n=3). In addition, seven out of nine BoAstV strains showed possible inter-genotype recombination and cross-species recombination. Therefore, our results increase the knowledge about the prevalence and the genetic evolution of BoAstV and provide evidence for the association between BoAstV infection and calf diarrhoea.


Assuntos
Infecções por Astroviridae , Doenças dos Bovinos , Coinfecção , Diarreia , Animais , Animais Recém-Nascidos/virologia , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , China/epidemiologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , Diarreia/epidemiologia , Diarreia/veterinária , Diarreia/virologia , Fezes/virologia , Prevalência
9.
Transbound Emerg Dis ; 68(4): 2465-2476, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33155439

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a significant global, enteric coronavirus in pigs and was first reported in Colombia in 2014. However, the epidemiology, genetic and antigenic characteristics of the virus have yet to be investigated. In this study, we investigated the dissemination of PEDV by testing 536 samples by RT-PCR over a 33-month period. The 35.8% of positive samples (n = 192) was significantly different (p < .01) between months over time, with a higher number of positives samples occurring at the beginning of the epidemic and during the second epidemic wave within the main pork producing region. The complete PEDV genomes were generated for 21 strains, which shared a high nucleotide and amino acid sequence identity, except for the spike (S) gene. Recombinant regions were identified within the Colombian strains and between Colombian and Asian PEDV strains. Phylogenetic analysis of the 21 Colombian strains demonstrated the presence of 7 lineages that shared common ancestors with PEDV strains from the United States. Moreover, the antigenic analysis demonstrated residue differences in the neutralizing epitopes in the spike and nucleocapsid proteins. Our results illustrated the simultaneous introduction of the two PEDV genotypes (GIIa American pandemic and S-INDEL) into the Colombian swine industry during the 2014 PEDV epidemic and enhanced our understanding of the epidemiology and molecular diversity of PEDV in Colombia.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Colômbia/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Epidemias/veterinária , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/epidemiologia , Estados Unidos
10.
PLoS One ; 15(12): e0244498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33373390

RESUMO

The genus Rotavirus comprises eight species, designated A to H, and two recently identified tentative species I in dogs and J in bats. Species Rotavirus A, B, C and H (RVA, RVB, RVC and RVH) have been detected in humans and animals. While human and animal RVA are well characterized and defined, complete porcine genome sequences in the GenBank are limited compared to human strains. Here, we used a metagenomic approach to sequence the 11 segments of RVA, RVC and RVH strains from piglets in the United States (US) and explore the evolutionary relations of these RV species. Metagenomics identified Astroviridae, Picornaviridae, Caliciviridae, Coronoviridae in samples MN9.65 and OK5.68 while Picobirnaviridae and Arteriviridae were only identified in sample OK5.68. Whole genome sequencing and phylogenetic analyses identified multiple genotypes with the RVA of strain MN9.65 and OK5.68, with the genome constellation of G5/G9-P[7]/P[13]-I5/I5- R1/R1-C1-M1-A8-N1-T7-E1/E1-H1 and G5/G9-P[6]/P[7]-I5-R1/R1-C1-M1-A8-N1-T1/T7-E1/E1-H1, respectively. The RVA strains had a complex evolutionary relationship with other mammalian strains. The RVC strain OK5.68 had a genome constellation of G9-P[6]-I1-R1-C5-M6-A5-N1-T1-E1-H1, and shared an evolutionary relationship with porcine strains from the US. The RVH strains MN9.65 and OK5.68 had the genome constellation of G5-P1-I1-R1-C1-M1-A5-N1-T1-E4-H1 and G5-P1-I1-R1-C1-M1-A5-N1-T1-E1-H1, indicating multiple RVH genome constellations are circulating in the US. These findings allow us to understand the complexity of the enteric virome, develop improved screening methods for RVC and RVH strains, facilitate expanded rotavirus surveillance in pigs, and increase our understanding of the origin and evolution of rotavirus species.


Assuntos
Genoma Viral/genética , Infecções por Rotavirus/veterinária , Rotavirus/genética , Sus scrofa/virologia , Doenças dos Suínos/virologia , Animais , Evolução Molecular , Metagenômica , Filogenia , Rotavirus/isolamento & purificação , Infecções por Rotavirus/diagnóstico , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/prevenção & controle , Estados Unidos , Viroma/genética , Sequenciamento Completo do Genoma
11.
Inflammation ; 40(1): 1-12, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27718095

RESUMO

Indirubin plays an important role in the treatment of many chronic diseases and exhibits strong anti-inflammatory activity. However, the molecular mode of action during mastitis prophylaxis remains poorly understood. In this study, a lipopolysaccharide (LPS)-induced mastitis mouse model showed that indirubin attenuated histopathological changes in the mammary gland, local tissue necrosis, and neutrophil infiltration. Moreover, indirubin significantly downregulated the production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α). We explored the mechanism whereby indirubin exerts protective effects against LPS-induced inflammation of mouse mammary epithelial cells (MMECs). The addition of different concentrations of indirubin before exposure of cells to LPS for 1 h significantly attenuated inflammation and reduced the concentrations of the three inflammatory cytokines in a dose-dependent manner. Indirubin downregulated LPS-induced cyclooxygenase-2 (COX-2) and Toll-like receptor 4 (TLR4) expression, inhibited phosphorylation of the LPS-induced nuclear transcription factor-kappa B (NF-kB) P65 protein and its inhibitor IkBα of the NF-kB signaling pathway. Furthermore, indirubin suppressed phosphorylation of P38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signal pathways. Thus, indirubin effectively suppressed LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways and may be useful for mastitis prophylaxis.


Assuntos
Inflamação/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/fisiologia , Animais , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Indóis/farmacologia , Indóis/uso terapêutico , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Mastite/tratamento farmacológico , Camundongos , Transdução de Sinais/efeitos dos fármacos
12.
Front Vet Sci ; 4: 217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326951

RESUMO

Fecal samples (n = 76) were collected from 38 snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia National Nature Reserve (China) and examined for the presence of enteropathogenic Escherichia coli (EPEC). The 56 samples originated from 30 free-ranging monkeys on the reserve and 20 samples from 8 captive monkeys that were previously rescued and kept at the research center. Eight diarrhea samples were collected from four of the eight captive monkeys (two samples from each monkey), and two EPEC strains (2.6%) (95% confidence interval 0.3-9.2%) were isolated from two fecal samples from two diarrheic monkeys. Both strains belonged to serotype O98 and phylogenetic group D (TspE4C2+, ChuA+). The virulence gene detection identified these strains as an atypical EPEC (aEPEC) (bfpB - , stx1 - , and stx2-) with the subtype eae+, escV+, and intiminß+. These strains were highly sensitive to all the antibiotics tested. The lethal dose 50% of the two isolates in Kunming mice was 7.40 × 108 CFU/0.2 mL and 2.40 × 108 CFU/0.2 mL, respectively, indicating low virulence. Based on the report that this serotype had been isolated from some other non-human animals and humans with diarrhea, the first identification of aEPEC O98 strains and their drug resistance profile in R. roxellana is of ecological significance for disease control in this endangered species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA