Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Environ Sci Technol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312274

RESUMO

6PPD-quinone (6PPD-Q) is frequently detected in various environmental media, and the environmentally relevant concentrations can be fatal to Oncorhynchus mykiss. Notably, 6PPD-Q has two enantiomers (S-6PPD-Q and R-6PPD-Q). In this study, O. mykiss was separately exposed to each enantiomer and racemate of 6PPD-Q for 96 h at environmentally relevant concentrations, and livers were collected. Effects on the biochemical, pathological, and ultrastructural changes were assessed, and metabolomics was conducted to elucidate the potential hepatotoxicity mechanism. Compared with the control treatment, the levels of catalase (CAT, all treatments except for 0.1 µg/L rac-6PPD-Q), and glutathione-S-transferase (GST, all treatments) significantly declined. Hepatocyte space became smaller, nuclear morphology changed, and nucleolysis occurred. Mitochondrial malformation and vesicle-like structure dilation of the endoplasmic reticulum (ER) were observed in the hepatocytes, which was most serious after S-6PPD-Q exposure. Some amino acid metabolism, folate biosynthesis, taurine and hypotaurine metabolism and purine metabolism were disturbed, consistent with mitochondrial dysfunction and ER stress. The differential metabolites were in the order of S-6PPD-Q (216) > rac-6PPD-Q (88) > R-6PPD-Q (56). Thus, 6PPD-Q-induced hepatic mitochondrial dysfunction and ER stress, causing metabolic disturbance and oxidative stress might be the toxic mechanism of 6PPD-Q in O. mykiss liver, and S-6PPD-Q effects were the most serious.

2.
J Agric Food Chem ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321313

RESUMO

Isopyrazam (IPZ) is a new chiral fungicide. For bioactivity, there was a 3.37-1578 times difference among the four stereoisomers. For Alternaria alternata and Phoma multirostrata, cis-(1S,4R,9S)-IPZ had the greatest activity. Using cis-IPZ might improve the efficacy and reduce the dosage of the racemate by 54.7-72.2% for A. alternata and P. multirostrata. To zebrafish, trans-IPZ showed the highest acute toxicity (LC50, 0.096 mg/L). The degradation half-lives of IPZ stereoisomers in the five crops ranged from 3.50 to 15.2 days. Cis-IPZ was preferentially degraded in grape, pear, and celery. The residual concentrations of IPZ in grape and celery were still higher than the maximum residue limit, and the acute and chronic dietary intake risks of IPZ in celery were unacceptable (RQa: 146-250%, HQ: 117-200%), which were worthy of further researching. Based on the research results, it is safer and more reasonable to use IPZ in the form of a racemate with a high ratio of cis-IPZ.

3.
J Hazard Mater ; 478: 135560, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173367

RESUMO

The coexistence of cadmium (Cd) can potentiate (synergism) or reduce (antagonism) the pesticide effects on organisms, which may change with chiral pesticide enantiomers. Previous studies have reported the toxic effects of chiral penthiopyrad on lipid metabolism in zebrafish (Danio rerio) liver. The Cd effects and toxic mechanism on lipid accumulation were investigated from the perspective of endoplasmic reticulum (ER) stress and mitochondrial dysfunction. The coexistence of Cd increased the concentrations of penthiopyrad and its metabolites in zebrafish. Penthiopyrad exposure exhibited significant effects on lipid metabolism and mitochondrial function-related indicators, which were verified by lipid droplets and mitochondrial damage in subcellular structures. Moreover, penthiopyrad activated the genes of ER unfolded protein reaction (UPR) and Ca2+ permeable channels, and S-penthiopyrad exhibited more serious effects on ER stress with ER hyperplasia than R-penthiopyrad. As a mitochondrial uncoupler, the coexistence of Cd could decrease lipid accumulation by alleviating ER stress and mitochondrial dysfunction, and these effects were the most significant for R-penthiopyrad. There were antagonistic effects between Cd and penthiopyrad, which could reduce the damage caused by penthiopyrad in zebrafish, thus increasing the bioaccumulation of penthiopyrad in zebrafish. These findings highlighted the importance and necessity of evaluating the ecological risks of metal-chiral pesticide mixtures.


Assuntos
Cádmio , Estresse do Retículo Endoplasmático , Metabolismo dos Lipídeos , Fígado , Mitocôndrias , Peixe-Zebra , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Cádmio/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Cell Rep ; 43(8): 114596, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39110591

RESUMO

The Ralstonia solanacearum species complex causes bacterial wilt in a variety of crops. Tomato cultivar Hawaii 7996 is a widely used resistance resource; however, the resistance is evaded by virulent strains, with the underlying mechanisms still unknown. Here, we report that the phylotype Ⅱ strain ES5-1 can overcome Hawaii 7996 resistance. RipV2, a type Ⅲ effector specific to phylotype Ⅱ strains, is vital in overcoming tomato resistance. RipV2, which encodes an E3 ubiquitin ligase, suppresses immune responses and Toll/interleukin-1 receptor/resistance nucleotide-binding/leucine-rich repeat (NLR) (TNL)-mediated cell death. Tomato helper NLR N requirement gene 1 (NRG1), enhanced disease susceptibility 1 (EDS1), and senescence-associated gene 101b (SAG101b) are identified as RipV2 target proteins. RipV2 is essential for ES5-1 virulence in Hawaii 7996 but not in SlNRG1-silenced tomato, demonstrating SlNRG1 to be an RipV2 virulence target. Our results dissect the mechanisms of RipV2 in disrupting immunity and highlight the importance of converged immune components in conferring bacterial wilt resistance.


Assuntos
Resistência à Doença , Doenças das Plantas , Ralstonia solanacearum , Solanum lycopersicum , Ubiquitinação , Ralstonia solanacearum/patogenicidade , Ralstonia solanacearum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas NLR/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteólise , Virulência
5.
Se Pu ; 42(8): 740-748, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39086242

RESUMO

Perfluorinated and polyfluoroalkyl substances (PFASs) are compounds characterized by at least one perfluorinated carbon atom in an alkyl chain linked to side-chain groups. Owing to their unique chemical properties, these compounds are widely used in industrial production and daily life. However, owing to anthropogenic activities, sewage discharge, surface runoff, and atmospheric deposition, PFASs have gradually infiltrated the environment and aquatic resources. With their gradual accumulation in environmental waters, PFASs have been detected in fishes and several fish-feeding species, suggesting that they are bioconcentrated and even amplified in aquatic organisms. PFASs exhibit high intestinal absorption efficiencies, and they bioaccumulate at higher trophic levels in the food chain. They can be bioconcentrated in the human body via food (e. g., fish) and thus threaten human health. Therefore, establishing an efficient analytical technique for use in analyzing PFASs in typical fish samples and providing technical support for the safety regulation and risk assessment of fish products is necessary. In this study, by combining solvent extraction and magnetic dispersion-solid phase extraction (d-SPE), an improved QuEChERS method with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 13 PFASs in fish samples. Fe3O4-TiO2 can be used as an ideal adsorbent in the removal of sample matrix interference and a separation medium for the rapid encapsulation of other solids to be isolated from the solution. Based on the matrix characteristics of the fish products and structural properties of the target PFASs, Fe3O4-TiO2 and N-propyl ethylenediamine (PSA) were employed as adsorbents in dispersive purification. The internal standard method was used in the quantitative analyses of the PFASs. To optimize the sample pretreatment conditions of analyzing PFASs, the selection of the extraction solvent and amounts of Fe3O4-TiO2 and PSA were optimized. Several PFASs contain acidic groups that are non-dissociated in acidic environments, thus favoring their entry into the organic phase. In addition, acidified acetonitrile can denature and precipitate the proteins within the sample matrix, facilitating their removal. Finally, 2% formic acid acetonitrile was used as the extraction solvent, and 20 mg Fe3O4-TiO2, 20 mg PSA and 120 mg anhydrous MgSO4 were used as purification adsorbents. Under the optimized conditions, the developed method exhibited an excellent linearity (R≥0.9973) in the range of 0.01-50 µg/L, and the limits of detection (LODs) and quantification (LOQs) ranged from 0.001-0.023 and 0.003-0.078 µg/L, respectively. The recoveries of the 13 PFASs at low, medium, and high spiked levels (0.5, 10, and 100 µg/kg) were 78.1%-118%, with the intra- and inter-day precisions of 0.2%-11.1% and 0.8%-8.7%, respectively. This method was applied in analyzing real samples, and PFASs including perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, and perfluorotridecanoic acid, were detected in all 11 samples evaluated. This method is simple, sensitive, and suitable for use in analyzing PFASs in fish samples.


Assuntos
Peixes , Fluorocarbonos , Contaminação de Alimentos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Fluorocarbonos/análise , Animais , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Caprilatos/análise , Ácidos Alcanossulfônicos/análise
6.
Ecotoxicol Environ Saf ; 282: 116735, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024954

RESUMO

Benzovindiflupyr (BEN) has emerged as one of the fastest-growing SDHI fungicides in recent years, but it is considered "very highly toxic" to aquatic fish, invertebrates and crustaceans (EC50 or LC50, 0.0035-0.056 mg/L, acute toxicity). The comprehensive study on bioactivity, toxicity, and degradation behaviors of BEN at the enantiomeric level would facilitate the development of a high-efficiency and low-risk application method. The bioactivities of 1S, 4R-(-)-BEN against five target pathogens (Alternaria alternata, Phoma multirostrata, Selerotium rolfsii, Magnaporthe oryzae, and Rhizoctonia solani) (EC50, 0.00562-0.329 mg/L, high-efficiency) were 6.7-1029 times higher than 1R, 4S-(+)-BEN, demonstrating significant enantioselectivity. For Danio rerio, 1S, 4R-(-)-BEN (LC50, 0.0360 mg/L, "very highly toxic") exhibited higher toxicity than 1 R, 4S-(+)-BEN, but the toxic interaction was concentration addition (TUrac, 0.94), indicating an enhanced toxicity in the presence of 1R, 4S-(+)-BEN. Molecular docking was employed to offer insights at the molecular level and elucidate the factors influencing enantioselectivity. The stronger binding affinity of 1S, 4R-(-)-BEN with SDH was in line with the quantitative experimental findings. The degradation of two BEN enantiomers in four different fruits followed the first-order degradation kinetics equation, and displayed enantioselectivity. The preferential degradation of 1R, 4S-(+)-BEN was found in pears and grapes, while varying enantioselectivity was found at different stages in tomatoes and watermelons. The residual concentrations of BEN in grapes were higher than the EU's MRL, which in the other three fruits were below the MRLs during the sampling. In conclusion, 1S, 4R-(-)-BEN proved to be the more effective monomer. Utilizing the pure monomer could not only reduce the dosage of racemate by about 44-59 %, but also mitigate the risk of introducing inefficient monomer into the environment (especially for fish).


Assuntos
Fungicidas Industriais , Fungicidas Industriais/toxicidade , Fungicidas Industriais/química , Animais , Estereoisomerismo , Peixe-Zebra , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Simulação de Acoplamento Molecular
7.
Sci Total Environ ; 932: 172811, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701918

RESUMO

Fipronil is a persistent insecticide known to transfer into hen eggs from exposure from animal drinking water and feed, but some questions remain regarding its transfer behavior and distribution characteristics. Therefore, the dynamic metabolism, residue distribution and transfer factor (TF) of fipronil were investigated in 11 edible tissues of laying hens and eggs over 21 days. After a continuous low-dose drinking water exposure scenario, the sum of fipronil and all its metabolites (defined as fipronilT) quickly transferred to each edible tissue and gradually increased with exposure time. FipronilT residue in eggs first appeared at 3 days and then gradually increased. After a single high-dose feed exposure scenario, fipronilT residue in edible tissues first appeared after 2 h, quickly peaked at 1 day, and then gradually decreased. In eggs, fipronilT residue first appeared at 2 days, peaked 6-7 days and then gradually decreased. The TF values followed the order of the skin (0.30-0.73) > egg yolk (0.30-0.71) > bottom (0.21-0.59) after drinking water exposure, and the order of the skin (1.01-1.59) > bottom (0.75-1.1) > egg yolk (0.58-1.10) for feed exposure. Fipronil sulfone, a more toxic compound, was the predominant metabolite with higher levels distributed in the skin and bottom for both exposure pathways. FipronilT was distributed in egg yolks rather than in albumen owing to its lipophilicity, and the ratio of egg yolk to albumen may potentially reflect the time of exposure. The distinction is that the residues after feed exposure were much higher than that after drinking water exposure in edible tissues and eggs. The study highlights the residual characteristics of two exposure pathways, which would contribute to the tracing of contamination sources and risk assessment.


Assuntos
Galinhas , Ovos , Inseticidas , Pirazóis , Animais , Pirazóis/análise , Inseticidas/análise , Ovos/análise , Medição de Risco , Feminino , Ração Animal/análise , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
8.
J Hazard Mater ; 471: 134357, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643584

RESUMO

The compound 6PPD is widely acknowledged for its antioxidative properties; however, concerns regarding its impact on aquatic organisms have spurred comprehensive investigations. In our study, we advanced our comprehension by revealing that exposure to 6PPD could induce cardiac dysfunction, myocardial injury and DNA damage in adult zebrafish. Furthermore, our exploration unveiled that the exposure of cardiomyocytes to 6PPD resulted in apoptosis and mitochondrial injury, as corroborated by analyses using transmission electron microscopy and flow cytometry. Significantly, our study demonstrated the activation of the autophagy pathway in both the heart of zebrafish and cardiomyocytes, as substantiated by transmission electron microscopy and immunofluorescent techniques. Importantly, the increased the expression of P62 in the heart and cardiomyocytes suggested an inhibition of the autophagic process. The reduction in autophagy flux was also verified through in vivo experiments involving the infection of mCherry-GFP-LC3. We further identified that the fusion of autophagosomes and lysosomes was impaired in the 6PPD treatment group. In summary, our findings indicated that the impaired fusion of autophagosomes and lysosomes hampered the autophagic degradation process, leading to apoptosis and ultimately resulting in cardiac dysfunction and myocardial injury. This study discovered the crucial role of the autophagy pathway in regulating 6PPD-induced cardiotoxicity. SYNOPSIS: 6PPD exposure inhibited the autophagic degradation process and induced mitochondrial injury and apoptosis in the heart of adult zebrafish.


Assuntos
Apoptose , Autofagia , Mitocôndrias , Miócitos Cardíacos , Peixe-Zebra , Animais , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Dano ao DNA , Coração/efeitos dos fármacos
9.
Food Res Int ; 182: 114077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519167

RESUMO

Fruits flavor deterioration is extremely likely to occur during post-harvest storage, which not only damages quality but also seriously affects its market value. This work focuses on the study of fruits deterioration odorants during storage by describing their chemical compositions (i.e., alcohols, aldehydes, acids, and sulfur-containing compounds). Besides, the specific flavor deterioration mechanisms (i.e., fermentation metabolism, lipid oxidation, and amino acid degradation) inducing by factors (temperature, oxygen, microorganisms, ethylene) are summarized. Moreover, quality control strategies to mitigate fruits flavor deterioration by physical (temperature control, hypobaric treatment, UV-C, CA) and chemical (1-MCP, MT, NO, MeJA) techniques are also proposed. This review will provide useful references for fruits flavor control technologies development.


Assuntos
Frutas , Odorantes , Frutas/química , Aldeídos/análise , Álcoois/análise , Fermentação
10.
Food Chem ; 443: 138578, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301554

RESUMO

Optimization of seven parameters of stir bar sorptive extraction (SBSE) on mulberry volatile components for the first time. A total of 347 volatile components were identified and quantified in 14 mulberry varieties, predominantly encompassing esters, aldehydes, terpenoids, hydrocarbons, ketones, alcohols, heterocyclics, acids, and phenols. Hexanal and (E)-2-hexenal were the dominant volatiles. Furthermore, 79 volatile compounds characterized by odor activity values (OAVs) > 1 were identified, making a significant contribution to the distinctive mulberry flavor. "Green" notes were the most intense, followed by "fatty" and "fruity". Utilizing odor ring charts, the volatile flavor characteristics of the 14 mulberry varieties could be intuitively distinguished. This study not only established a viable methodology for differentiating mulberry varieties but also laid a theoretical foundation for the quality evaluation and variety breeding of mulberry flavor.


Assuntos
Aldeídos , Morus , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Melhoramento Vegetal , Cromatografia Gasosa-Espectrometria de Massas/métodos , Frutas/química , Odorantes/análise
11.
Sci Total Environ ; 921: 170899, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350559

RESUMO

As the wide use of pesticides, they could form combined pollution with heavy metals, which would affect their environmental behaviors and toxic effects. Particularly, the effects would be more intricate for chiral pesticides. In this study, the accumulation and dissipation trends of tetraconazole enantiomers in zebrafish were investigated by individual and combined exposure of cadmium (Cd) and tetraconazole (including racemate and enantiomers) after confirming the absolute configuration of tetraconazole enantiomer. For the enantiomer treatments, Cd enhanced the accumulation of S-(+)-tetraconazole, but declined the concentrations of R-(-)-tetraconazole in zebrafish. The dissipation half-lives of tetraconazole enantiomers were extended by 1.65-1.44 times after the combined exposure of Cd and enantiomers. The community richness and diversity of intestinal microbiota were reduced in all treatments, and there were significant differences in R + Cd treatment. There was synergistic effect between Cd and S-(+)-tetraconazole for the effects on the relative abundances of Fusobacteria, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. For R-(-)-tetraconazole, Cd mainly exhibited antagonistic effects. In the combined exposure of Cd and S-(+)-tetraconazole, the relative abundance changes of Cetobacterium (Fusobacteria, increase) and Edwardsiella (Proteobacteria, decrease) might affect the carbohydrate metabolism and energy metabolism, and led to the increase of S-(+)-tetraconazole bioaccumulation concentration. In the combined exposure of Cd and R-(-)-tetraconazole, Cd could increase the relative abundance of Edwardsiella (Proteobacteria), and affect the amino acid metabolism, which might reduce the bioaccumulation concentration of R-(-)-tetraconazole. This study reported for the first time that the abundance of intestinal microbiota in zebrafish might affect the bioaccumulation and dissipation of tetraconazole enantiomers, and would provide new insight for the study of combined pollutions.


Assuntos
Clorobenzenos , Fluorocarbonos , Microbioma Gastrointestinal , Praguicidas , Triazóis , Animais , Cádmio/metabolismo , Peixe-Zebra/metabolismo , Proteobactérias/metabolismo
12.
Anal Bioanal Chem ; 416(1): 203-214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914955

RESUMO

In this study, an integrated QuEChERS method was developed for the rapid determination of 22 per- and polyfluoroalkyl substances (PFASs) in milk by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The extraction and purification processes were combined into one step with this method. Meanwhile, the solid-liquid separation was carried out by magnetic suction (Fe3O4-SiO2) instead of the centrifugal process. The primary experimental parameters were optimized, including the type of extraction solvent, the amounts of magnetic nanomaterials (Fe3O4-SiO2), and the purification materials (ZrO2 and C18). The developed method exhibits high precision (RSDs < 9.9%), low limits of detection (0.004-0.079 µg/kg) and limits of quantitation (0.01-0.26 µg/kg), and acceptable recovery (71.7-116%) under optimized conditions. The developed integrated QuEChERS method had clear superiority in terms of sample pretreatment time, operating procedures, reagent amount, and recovery. This makes it an excellent alternative analytical technique for PFAS residue measurement at low micrograms-per-kilogram ranges with desirable sensitivity.


Assuntos
Fluorocarbonos , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Leite/química , Dióxido de Silício , Espectrometria de Massa com Cromatografia Líquida , Fluorocarbonos/análise
13.
Food Chem ; 438: 137944, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37984002

RESUMO

Metconazole is a novel chiral fungicide with two chiral carbon atoms, but the research on its stereoselective behavior is limited. Therefore, the stereoselective behaviors of metconazole in four fruits, including grape, peach, pear and jujube, were summarized in this study. After determining the absolute configuration of metconazole stereoisomers, a chiral separation method through supercritical fluid chromatography/tandem triple quadrupole mass spectrometry was first developed, which combined an improved QuEChERS method obtained the recoveries of 71.6-113 % with RSD ≤ 19.8 %. The LOD and LOQ were 4.30-95.9 and 10.5-143.2 ng/kg, respectively. Different stereoselective and diastereoselective behaviors were observed in four fruits. Dietary risk assessments of rac-metconazole were performed in populations with different ages and genders. Both acute (RQa, 0.0124-0.140 %) and chronic (HQ, 0.0234-0.0794 %) intake risks were acceptable. The results of this study would contribute to more complete risk assessments of metconazole and provide data for chiral studies.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/análise , Espectrometria de Massas em Tandem/métodos , Frutas/química , Triazóis/análise , Estereoisomerismo
14.
Sci Total Environ ; 912: 169262, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38081426

RESUMO

Fungicides have been widely used for reducing the losses caused by plant diseases. Rice and wheat are the most basic food crops, and the potential risks after applying fungicides are worthy of attention. Especially rice-fish farming system is an ecological symbiosis system that is beneficial to both environmental and ecological protection. However, the application of pesticides will stress the ecosystem, and the pesticide residues in rice and fish would be transmitted along the food chain, which is harmful to human health. Here, the enantioselective behaviors of chiral pydiflumetofen in rice-fish and wheat farming systems were clarified. In the rice-fish farming system, pydiflumetofen enantiomers were preferentially attached to the plants, entering the paddy water and settling into the paddy soil, and then accumulating and dissipating in the fish. With the growth of rice, it was transported to rice fruits. The wheat farming system was similar. Enantioselective dissipation occurred in carp (Cyprinus carpio), brown rice and wheat soil, and S-(+)-pydiflumetofen was preferentially dissipated. In other words, R-(-)-pydiflumetofen showed higher concentrations, especially in carp, which meant R-(-)-pydiflumetofen was more easily accumulated in the environment, and posed a greater potential risk to the farming system. The pydiflumetofen residues in brown rice and wheat were lower than MRLs from the EFSA (0.02 mg/kg) and eCFR (0.3 mg/kg), respectively. What deserves attention is that the MRL of pydiflumetofen in fish is not clear. Meanwhile, pydiflumetofen in paddy soil and wheat soil had a persistent residual effect, and the risks could not be ignored. Combined with the previous research, developing S-(+)-pydiflumetofen products will help to reduce the dosage and reduce the risks to environment and people. This study evaluated the environmental fate and risk of chiral pydiflumetofen from the perspective of farming system, and would provide data support for its rational use and risk assessment.


Assuntos
Carpas , Fungicidas Industriais , Oryza , Pirazóis , Animais , Humanos , Fungicidas Industriais/análise , Triticum , Ecossistema , Estereoisomerismo , Agricultura , Solo/química , Medição de Risco
15.
Environ Res ; 246: 118023, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145733

RESUMO

Pesticides represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. However, as an important vegetable producing country, surveys on pesticide residues in soils of vegetable production areas are scarce in China. This study presented the occurrence, spatial distribution, correlation between vegetable types and pesticides, and ecological risk evaluation of 94 current-use pesticides in 184 soil samples from vegetable production areas of Zhejiang province (China). The ecological risks of pesticides to soil biota were evaluated with toxicity exposure ratios (TERs) and risk quotient (RQ). The pesticide concentrations varied largely from below the limit of quantification to 20703.06 µg/kg (chlorpyrifos). The situation of pesticide residues in Jiaxing is more serious than in other cities. Soils in the vegetable areas are highly diverse in pesticide combinations. Eisenia fetida suffered exposure risk from multiple pesticides. The risk posed by chlorpyrifos, which exhibited the highest RQs at all scenarios, was worrisome. Only a few pesticides accounted for the overall risk of a city, while the other pesticides make little or zero contribution. This work will guide the appropriate use of pesticides and manage soil ecological risks, achieving green agricultural production.


Assuntos
Clorpirifos , Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Praguicidas/toxicidade , Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Resíduos de Praguicidas/análise , Solo/química , Verduras , Monitoramento Ambiental , Medição de Risco , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
16.
J Agric Food Chem ; 71(48): 18709-18721, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38009539

RESUMO

The stereoselective behaviors and dietary risks of metconazole (MZE) in soil and five vegetables were investigated. The results showed that there was species-specific stereoselective and diastereoselective dissipation, and the half-lives ranged from 0.69 to 8.17 days. cis-(+)-1S,5R-MZE was preferentially dissipated in soybean pods, cabbages, celeries, and tomatoes, which was contrary to soybean plants and soil. trans-(+)-1R,5R-MZE was preferentially dissipated in peanut plants, peanut shells, celeries, and tomatoes, while trans-(-)-1S,5S-MZE was preferentially dissipated in soybean plants. cis-MZE was preferentially dissipated in the test vegetables and soil, except celery. The stereoisomeric excess changes were higher than 10%, indicating that the stereoselectivity and diastereoselectivity should be considered in the risk assessment of MZE in soybean plants, pods, and peanut plants. The acute and chronic dietary intake risks of rac-MZE for different groups of people were acceptable. The preferentially dissipated and high activity cis-(+)-1S,5R-MZE with lower toxicity might be suitable for application as monocase.


Assuntos
Apium , Brassica , Poluentes do Solo , Solanum lycopersicum , Humanos , Verduras , Glycine max , Arachis , Solo , Estereoisomerismo , Medição de Risco , Poluentes do Solo/análise
17.
J Chromatogr A ; 1708: 464336, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660563

RESUMO

A rapid and accurate integrated QuEChERS method was established for the determination of multi-pesticide residues in fruits. Poly-dopamine-modified magnetic nanomaterial (Fe3O4-pDA) was homemade and characterized. The prepared Fe3O4-pDA has the functional group of absorbing the saccharides, and can be used as co-adsorbent with 3-(N, n­diethyl amino) propyl trimethoxy-silane (PSA) in the developed integrated QuEChERS method to purify the fruit matrix, thus achieve the accurate determination of multi-pesticides residue. Grape was used as the representative sample to explore the influence of the salting out agent and each purification adsorbent on the pesticide recoveries. Under the optimized conditions, the proposed method showed good linearity for 92.6% of pesticides in the concentration range of 1-150 µg L-1 with method limit of quantitative (mLOQs) ranged from 10 to 18 µg kg-1. Spiked recoveries experiments were performed on four kinds of grapes and other fruits (apple, watermelon, pear, jujube and peach), in which satisfactory recoveries and precision were obtained for most of the pesticides. Meanwhile, comparison experiments also verified this method was superior to the traditional QuEChERS method in terms of convenient operation, high efficiency and low reagent consumption. The further real sample analysis was performed using this method, and the overall detection rate was 52%, while 2% of samples were exceeding the maximum residue limits. All results confirmed that the proposed method could be used for the rapid, simple, low-costing and effective analyses of trace multi-pesticides residue in fruit samples.


Assuntos
Nanoestruturas , Resíduos de Praguicidas , Praguicidas , Frutas , Dopamina , Fenômenos Magnéticos
18.
Environ Pollut ; 333: 122012, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307862

RESUMO

For the purpose of screening high-efficiency and low-risk green pesticides, a systematic study on fungicide penthiopyrad was conducted at the enantiomeric level. The bioactivity of S-(+)-penthiopyrad (median effective concentration (EC50), 0.035 mg/L) against Rhizoctonia solani was 988 times higher than R-(-)-penthiopyrad (EC50, 34.6 mg/L), which would reduce 75% usage of rac-penthiopyrad under the same efficacy. Furthermore, their antagonistic interaction (toxic unit (TUrac), 2.07) indicated the existence of R-(-)-penthiopyrad would reduce the fungicidal activity of S-(+)-penthiopyrad. AlphaFold2 modeling and molecular docking illustrated that S-(+)-penthiopyrad had the higher binding ability with the target protein than R-(-)-penthiopyrad, showing higher bioactivity. For model organism Danio rerio, S-(+)-penthiopyrad (median lethal concentrations (LC50), 3.02 mg/L) and R-(-)-penthiopyrad (LC50, 4.89 mg/L) were both less toxic than rac-penthiopyrad (LC50, 2.73 mg/L), and the existence of R-(-)-penthiopyrad could synergistically enhance the toxicity of S-(+)-penthiopyrad (TUrac, 0.73), using S-(+)-penthiopyrad would reduce at least 23% toxicity to fish. The enantioselective dissipation and residues of rac-penthiopyrad were tested in three kinds of fruits, and their dissipation half-lives ranged from 1.91 to 23.7 d. S-(+)-penthiopyrad was dissipated preferentially in grapes, which was R-(-)-penthiopyrad in pears. On the 60th d, the residue concentrations of rac-penthiopyrad in grapes were still higher than its maximum residue limit (MRL), but the initial concentrations were lower than their MRL values in watermelons and pears. Thus, more tests in different cultivars of grapes and planting environments should be encouraged. Based on the acute and chronic dietary intake risk assessments, the risks in the three fruits were all acceptable. In conclusion, S-(+)-penthiopyrad is a high-efficiency and low-risk alternative to rac-penthiopyrad.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Estereoisomerismo , Simulação de Acoplamento Molecular , Fungicidas Industriais/toxicidade , Fungicidas Industriais/química , Comportamento de Redução do Risco
19.
J Agric Food Chem ; 71(23): 8859-8866, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253274

RESUMO

Penthiopyrad is a widely used succinic dehydrogenase inhibitor fungicide with two enantiomers, while the data on its enantioselective behaviors in crops are limited. The enantioselective dissipation may directly or indirectly expose people to the preferentially residual enantiomer, which may affect the dietary risks of chiral penthiopyrad. In this study, the enantioselective behaviors of chiral penthiopyrad in five kinds of crops and whole-age dietary risk assessments were conducted. The dissipation half-lives of penthiopyrad enantiomers were in the range of 0.48-13.7 days. S-(+)-Penthiopyrad was preferentially dissipated in soybean plants, soybean, peanut kernel, peanut shell, celery, tomato, and soil, which was opposite in cabbage. The opposite enantioselective residue might expose people to different enantiomer, which bring more complex risks. On the 35th day (the harvest time), the residue concentrations of penthiopyrad were all lower than MRLs except celery. For acute dietary intake risks, the children aged 2-7 suffered the highest risks, especially for cabbage (RQa, 138%) and celery (RQa, 140%), which were unacceptable. For other people, the acute dietary intake risks of rac-penthiopyrad in cabbage and celery were also very high and in the range of 88.6-94.8%, which should raise concern. The chronic dietary intake risks of rac-penthiopyrad in the all crops for groups of Chinese population with different ages and genders were acceptable (HQ, 0.0006-29.1%), and the risks were the highest in celery, especially for children aged 2-7. This study could provide data support for the environmental behaviors and risk assessments of penthiopyrad at the enantiomeric level.


Assuntos
Fungicidas Industriais , Poluentes do Solo , Masculino , Criança , Feminino , Humanos , Fungicidas Industriais/química , Estereoisomerismo , Pirazóis , Verduras/química , Medição de Risco , Poluentes do Solo/química
20.
Cell ; 186(11): 2329-2344.e20, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37192618

RESUMO

Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.


Assuntos
Arabidopsis , Imunidade Vegetal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Reconhecimento de Padrão , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA