Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 247, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835064

RESUMO

BACKGROUND: The interplay between Toxoplasma gondii infection and tumor development is intriguing and not yet fully understood. Some studies showed that T. gondii reversed tumor immune suppression, while some reported the opposite, stating that T. gondii infection promoted tumor growth. METHODS: We created three mouse models to investigate the interplay between T. gondii and tumor. Model I aimed to study the effect of tumor growth on T. gondii infection by measuring cyst number and size. Models II and III were used to investigate the effect of different stages of T. gondii infection on tumor development via flow cytometry and bioluminescent imaging. Mouse strains (Kunming, BALB/c, and C57BL/6J) with varying susceptibilities to tumors were used in the study. RESULTS: The size and number of brain cysts in the tumor-infected group were significantly higher, indicating that tumor presence promotes T. gondii growth in the brain. Acute T. gondii infection, before or after tumor cell introduction, decreased tumor growth manifested by reduced bioluminescent signal and tumor size and weight. In the tumor microenvironment, CD4+ and CD8+ T cell number, including their subpopulations (cytotoxic CD8+ T cells and Th1 cells) had a time-dependent increase in the group with acute T. gondii infection compared with the group without infection. However, in the peripheral blood, the increase of T cells, including cytotoxic CD8+ T cells and Th1 cells, persisted 25 days after Lewis lung carcinoma (LLC) cell injection in the group with acute T. gondii. Chronic T. gondii infection enhanced tumor growth as reflected by increase in tumor size and weight. The LLC group with chronic T. gondii infection exhibited decreased percentages of cytotoxic CD8+ T cells and Th1 cells 25 days post-LLC injection as compared with the LLC group without T. gondii infection. At week 4 post-LLC injection, chronic T. gondii infection increased tumor formation rate [odds ratio (OR) 1.71] in both KM and BALB/c mice. CONCLUSIONS: Our research elucidates the dynamics between T. gondii infection and tumorigenesis. Tumor-induced immune suppression promoted T. gondii replication in the brain. Acute and chronic T. gondii infection had opposing effects on tumor development.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Toxoplasma , Animais , Camundongos , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Feminino , Linfócitos T CD8-Positivos/imunologia , Encéfalo/parasitologia , Encéfalo/patologia , Doença Crônica , Microambiente Tumoral , Neoplasias/parasitologia , Doença Aguda
2.
Int Immunopharmacol ; 126: 111227, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37977067

RESUMO

BACKGROUND: Despite EIF5A upregulation related to tumor progression in LUAD (lung adenocarcinoma), the underlying mechanisms remain elusive. In addition, there are few comprehensive analyses of EIF5A in LUAD. METHODS: We investigated the EIF5A expression level in LUAD patients using data from the TCGA and GEO databases. We employed qRT-PCR and western blot to verify EIF5A expression in cell lines, while immunohistochemistry was utilized for clinical sample analysis. We analyzed EIF5A expression in tumor-infiltrating immune cells using the TISCH database and assessed its association with immune infiltration in LUAD using the "ESTIMATE" R package. Bioinformatics approaches were developed to discover the EIF5A-related genes and explore EIF5A potential mechanisms in LUAD. Proliferation ability was verified through CCK-8, clone formation, and EdU assays, while flow cytometry assessed apoptosis and cell cycle. Western blot was used to detect the expression of pathway-related proteins. RESULTS: EIF5A was significantly upregulated in LUAD. Moreover, we constructed a MAZ-hsa-miR-424-3p-EIF5A transcriptional network. We explored the potential mechanism of EIF5A in LUAD and further investigated the cAMP signaling pathway and the cell cycle. Finally, we proved that EIF5A silencing induced G1/S Cell Cycle arrest, promoted apoptosis, and inhibited proliferation via the cAMP/PKA/CREB signaling pathway. CONCLUSION: EIF5A serves as a prognostic biomarker with a negative correlation to immune infiltrates in LUAD. It regulated the cell cycle in LUAD by inhibiting the cAMP/PKA/CREB signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Fator de Iniciação de Tradução Eucariótico 5A , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fator de Iniciação de Tradução Eucariótico 5A/metabolismo , Biomarcadores Tumorais/metabolismo , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/imunologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/imunologia , Pontos de Checagem do Ciclo Celular , Apoptose , Proliferação de Células , Transdução de Sinais , Linhagem Celular Tumoral
3.
Front Cell Infect Microbiol ; 13: 1267629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818043

RESUMO

Introduction: The masked palm civet (Paguma larvata) serves as a reservoir in transmitting pathogens, such as Toxoplasma gondii, to humans. However, the pathogenesis of T. gondii infection in masked palm civets has not been explored. We studied the molecular changes in the brain tissue of masked palm civets chronically infected with T. gondii ME49. Methods: The differentially expressed proteins in the brain tissue were investigated using iTRAQ and bioinformatics. Results: A total of 268 differential proteins were identified, of which 111 were upregulated and 157 were downregulated. KEGG analysis identified pathways including PI3K-Akt signaling pathway, proteoglycans in cancer, carbon metabolism, T-cell receptor signaling pathway. Combing transcriptomic and proteomics data, we identified 24 genes that were differentially expressed on both mRNA and protein levels. The top four upregulated proteins were REEP3, REEP4, TEP1, and EEPD1, which was confirmed by western blot and immunohistochemistry. KEGG analysis of these 24 genes identified signaling cascades that were associated with small cell lung cancer, breast cancer, Toll-like receptor signaling pathway, Wnt signaling pathways among others. To understand the mechanism of the observed alteration, we conducted immune infiltration analysis using TIMER databases which identified immune cells that are associated with the upregulation of these proteins. Protein network analysis identified 44 proteins that were in close relation to all four proteins. These proteins were significantly enriched in immunoregulation and cancer pathways including PI3K-Akt signaling pathway, Notch signaling pathway, chemokine signaling pathway, cell cycle, breast cancer, and prostate cancer. Bioinformatics utilizing two cancer databases (TCGA and GEPIA) revealed that the four genes were upregulated in many cancer types including glioblastoma (GBM). In addition, higher expression of REEP3 and EEPD1 was associated with better prognosis, while higher expression of REEP4 and TEP1 was associated with poor prognosis in GBM patients. Discussion: We identified the differentially expressed genes in the brain of T. gondii infected masked palm civets. These genes were associated with various cellular signaling pathways including those that are immune- and cancer-related.


Assuntos
Neoplasias da Mama , Toxoplasma , Masculino , Animais , Humanos , Viverridae/metabolismo , Multiômica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Encéfalo/metabolismo , Biologia Computacional , Neoplasias da Mama/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
4.
Environ Pollut ; 274: 116555, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549842

RESUMO

Microorganisms can degrade petroleum hydrocarbons, providing the advantages of low cost and few side effects towards ecosystems. Here, we evaluated the mechanisms of microbial degradation of marine petroleum hydrocarbon using metagenomics and metatranscriptomics approaches in order to provide new insight into microbial degradation of petroleum hydrocarbon. Seawater samples were collected at a depth of ∼8 m from an area near a drilling platform in the Bohai Bay and metagenomic sequencing was used to evaluate the functional potential of these marine microbial communities. Metatranscriptomic sequencing, fluorescence in-situ hybridization experiments, and flow cytometry were also performed on the microbial communities of samples subjected to 12 different culture conditions. The data were also subjected to Weighted Gene Co-expression Network Analysis (WGCNA) and co-transcription data visualization to evaluate co-transcription of gene functions. Metagenomic sequencing indicated the presence of numerous genes that were related to petroleum hydrocarbon metabolism. Further, the high co-transcription of genes in multiple pathways, indicated that groups of genes were synergistically transcribed to metabolize petroleum hydrocarbons. Metatranscriptomics also showed that microbial metabolism was highly active in the enrichments and that the transcription of a large number of prokaryotic replication and repair genes were significantly up-regulated including those encoding for the type VI secretion system (T6SS) protein, DNA polymerase I, thymidine phosphorylase, mevalonate kinase, and two-component systems. Concomitantly, the transcription of ribosomal genes involved in translation and photosynthetic genes involved in energy metabolism were down-regulated. Overall, oil and oxygen presence can increase the oil-degradation rates and related genes' transcription. Lot different metabolisms are co-regulated to exploit nutrients derived from the metabolism of petroleum hydrocarbons. Our analysis of metagenomic, metatranscriptomic and degradation data in this study show that a widespread gene spectrum involved in oil-degradation and the cooperation among genes is of great importance.


Assuntos
Poluição por Petróleo , Petróleo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos , Metagenoma , Metagenômica , Poluição por Petróleo/análise , Água do Mar
7.
Plant Physiol Biochem ; 119: 211-223, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28898746

RESUMO

Piriformospora indica, a cultivable root endophytic fungus, induces growth promotion as well as biotic stress resistance and tolerance to abiotic stress in a broad range of host plants. In this study, the potential protection for M Medicago truncatula plants from salinity stress by P. indica was explored. The improved plant growth under severe saline condition was exhibited in P. indica-colonized lines. Moreover, the antioxidant enzymes activities and hyphae density in roots were increased by the endophyte under high salt concentration. Conversely, reduced malondialdehyde (MDA) activity, Na+ content and relative electrolyte conductivity (REC) were observed in P. indica colonized plants. Especially, osmoprotectant proline accumulated and the expression of Delta 1-Pyrroline-5-carboxylate synthetase gene (P5CS2) was induced. The defense related genes PR1 and PR10 and the transcription factors MtAlfin1-like and C2H2-type zinc finger protein MtZfp-c2h2 were induced by P. indica colonization as well. Further work indicated that salinity resistance was increased in overexpressing P5CS2, MtAlfin1-like and MtZfp-c2h2 transgenic M. truncatula plants. Interestingly, our data showed that the transcription factors MtAlfin1-like and MtZfp-c2h2 were positively contributed to P. indica colonization. These results demonstrate that tolerance to salinity stress was conferred by P. indica in M. truncatula via accumulation of osmoprotectant, stimulating antioxidant enzymes and the expression of defense-related genes. This work revealed the potential application of P. indica's as a plant growth-promoting fungus for the target improvement either in crop protection or in the salinized soil improvement indirectly.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Endófitos/crescimento & desenvolvimento , Medicago truncatula , Raízes de Plantas , Salinidade , Estresse Fisiológico , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
8.
Plant Physiol Biochem ; 102: 151-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26943021

RESUMO

Ent-kaurene (KS) synthases and ent-kaurene-like (KSL) synthases are involved in the biosynthesis of phytoalexins and/or gibberellins which play a role in plant immunity and development. The relationship between expression of five synthase genes (HvKSL1, HvKS2, HvKS4, HvKS5, HvKSL4) and plant colonization by the endophytic fungus Piriformospora indica was assessed in barley (Hordeum vulgare). The KS gene family is differently up-regulated at 1, 3 and 7 day after P. indica inoculation. By comparison, the HvKSL4 gene expression pattern is more significantly affected by UV irradiation and P. indica colonization. The characterizations of two silencing lines (HvKSL1-RNAi, HvKSL4-RNAi) also were analyzed. HvKSL1-RNAi and HvKSL4-RNAi lines in the first generation lead to less dark green leaves and slower plant development. Further, reduced spikelet fertility in progenies of RNAi plants heterozygous for HvKSL1 were observed, but not for HvKSL4. T2 generation of HvKSL1-RNAi line showed semi-dwarf phenotype while the wild type phenotype could be restored by applying GA3. Silencing of HvKSL4 and HvKSL1 resulted in reduced colonization by P. indica especially in the HvKSL1-RNAi line. These results probably suggest the presence of two ent-KS synthase in barley, one (HvKSL1) that participates in the biosynthesis of GAs and another (HvKSL4) that is involved in the biosynthesis of phytoalexins.


Assuntos
Alquil e Aril Transferases/metabolismo , Basidiomycota/crescimento & desenvolvimento , Hordeum/enzimologia , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Basidiomycota/genética , Diterpenos do Tipo Caurano/genética , Diterpenos do Tipo Caurano/metabolismo , Hordeum/genética , Proteínas de Plantas/genética
9.
Sheng Wu Gong Cheng Xue Bao ; 30(9): 1454-63, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25720160

RESUMO

In silico acquirement of the accurate residue details of protein on chromatographic media is a bottleneck in protein chromatography separation and purification. Here we developed a novel approach by coupling with H/D exchange and nuclear magnetic resonance to observe hen egg white lysozyme (HEWL) unfolding behavior adsorbed on cation exchange media (SP Sepharose FF). Analysis of 1D 1H-NMR shows that protein unfolding accelerated H/D exchange rate, leading to more loss of signal of amide hydrogen owing to exposure of residues and the more unfolding of protein. Analysis of two-dimensional hydrogen-hydrogen total correlation spectroscopy shows that lysozyme lost more signals and experienced great unfolding during its adsorption on media surface. However, for several distinct fragments, the protection degrees varied, the adsorbed lysozyme lost more signal intensity and was less protected at disorder structures (coil, bend, and turn), but was comparatively more protected against exchange at secondary structure domains (α-helix, ß-sheet). Finally, the binding site was determined by electrostatic calculations using computer simulation methods in conjunction with hydrogen deuterium labeled protein and NMR. This study would help deeply understand the microscopic mechanism of protein chromatography and guide the purposely design of chromatographic process and media. Moreover, it also provide an effective tool to study the protein and biomaterials interaction in other applications.


Assuntos
Espectroscopia de Ressonância Magnética , Desdobramento de Proteína , Proteínas/química , Adsorção , Amidas , Cátions , Simulação por Computador , Deutério , Hidrogênio , Muramidase/química , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA