Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nat Med ; 77(4): 721-734, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353674

RESUMO

This study investigated the protective effect of lobetyolin (LBT), a Q-marker isolated from the roots of Platycodon grandiflorum (Radix Platycodi), against cisplatin-induced cytotoxicity in human embryonic kidney (HEK293) cells. Results showed that LBT at 20 µM significantly prevented cisplatin-induced cytotoxicity by improving the viability of HEK293 cells, decreasing levels of MDA, and decreasing GSH content triggered by cisplatin. It also suppressed reactive oxygen species (ROS) levels. Molecular docking analysis revealed a strong binding affinity between LBT and the NF-κB protein, with a docking fraction of - 6.5 kcal/mol. These results provide compelling evidence suggesting a potential link between the visualization analysis of LBT and its protective mechanism, specifically implicating the NF-κB signaling pathway. LBT also reduced the expression level of tumor necrosis factor-alpha (TNF-α), phosphorylation NF-κB and IκBα in HEK293 cells which were increased by cisplatin exposure, leading to inhibition of inflammation. Furthermore, western blotting showed that LBT antagonized the up-regulation of Bax, cleaved caspase 3, 8, and 9 expression and inhibited the MAPK signaling pathway by down-regulating phosphorylation JNK, ERK, and p38, partially ameliorating cisplatin-induced cytotoxicity in HEK293 cells. Therefore, these results indicate that LBT has potentially protected renal function by inhibiting inflammation and apoptosis.


Assuntos
Cisplatino , NF-kappa B , Humanos , Cisplatino/toxicidade , Células HEK293 , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Inflamação
2.
J Ethnopharmacol ; 314: 116596, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146841

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The dried root of Platycodon grandiflorum (Jacq.) A.DC. (PG) is a traditional herb used in Asian countries and is widely used in formulas for the treatment of diabetes. Platycodin D (PD) is one of the most important components of PG. AIM OF THE STUDY: This study aimed to investigate the improvement effects and regulatory mechanisms of PD on kidney injury in a high-fat diet (HFD) combined with streptozotocin (STZ)-induced diabetic nephropathy (DN). MATERIALS AND METHODS: Model mice were treated with oral gavage of the PD (2.5, 5 mg/kg) for 8 weeks. Determination of serum lipid and renal function-related indexes creatinine (CRE), and blood urea nitrogen (BUN) levels in mice, and histopathological section analysis of kidney. Molecular docking and molecular dynamics were utilized to study the binding ability of PD to target NF-κB and apoptosis signaling pathway-related proteins. Moreover, Western blot was used to test the expressions of NF-κB and apoptosis-related proteins. Vitro experiments were performed to validate the related mechanisms using RAW264.7 cells and HK2 cells cultured by high glucose. RESULTS: In vivo experiments, the administration of PD (2.5 and 5.0 mg/kg) reduced fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR) levels in DN mice, while lipid levels and renal function were significantly improved. Furthermore, PD significantly inhibited the development of DN in the model mice by regulating NF-κB and apoptotic signaling pathways, reduced the abnormal elevation of serum inflammatory factors TNF-α and IL-1ß, and repaired renal cell apoptosis. In vitro experiments, NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (PDTC) was used to confirm that PD can alleviate high glucose-induced inflammation in RAW264.7 cells and inhibit the release of inflammatory factors. And in HK2 cell experiments, it was verified that PD can inhibit ROS generation, reduce the loss of JC-1 and suppress HK2 cell injury by regulating NF-κB and apoptotic pathways. CONCLUSIONS: These data suggested that PD has the potential to prevent and treat DN and is a promising natural nephroprotective agent.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , NF-kappa B/metabolismo , Estreptozocina/farmacologia , Dieta Hiperlipídica , Simulação de Acoplamento Molecular , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Glucose/farmacologia , Apoptose , Lipídeos/farmacologia
3.
Food Funct ; 14(1): 74-86, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36504256

RESUMO

In this work, we investigated the ameliorative effects of platycodin D (PD), a major active chemical ingredient isolated from the roots of Platycodon grandiflorum (PG), on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. PD treatment (2.5 and 5.0 mg kg-1) improved HFD-induced body weight gain. PD administration also decreased the fasting blood glucose (FBG) level and improved glucose and insulin tolerance levels. These data collectively showed that PD could maintain glucose homeostasis. In addition, the diabetic mice with PD treatment also showed fewer pathological changes in liver tissues and improved hepatic functional indexes with respect to the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and recovery of abnormal liver function caused by T2D. Except for these, PD decreased the decomposition of hepatic glycogen. The results from western blot analysis showed that PD treatment might regulate the hepatic gluconeogenesis pathway with the increased phosphorylation/expression of AMPK and decreased expressions of PCK1 and G6Pase. In the aspect of lipid metabolism, PD decreased the whole-body lipid levels, including total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL), and reduced the hepatic fat accumulation induced by T2D through the AMPK/ACC/CPT-1 fatty acid anabolism pathway. In addition, the results of molecular docking showed that PD may have a potential direct effect on AMPK and other key glycolipid metabolism proteins. To summarize, PD modulation of hepatic glycolipid metabolism abnormalities is promising for T2D therapy in the future.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Hiperglicemia/metabolismo , Fígado/metabolismo , Simulação de Acoplamento Molecular , Estreptozocina
4.
J Ethnopharmacol ; 304: 116063, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36567037

RESUMO

ETHNIC PHARMACOLOGICAL RELEVANCE: Glaucoma is the second most common blindness in the world, which seriously affects the life quality of patients. Traditional Chinese Medicines (TCM), are important plant materials, widely used for ocular disease all over the world. With the help of modern ophthalmic detection technology, TCM has gradually become an important content in the field of ophthalmology, characterized by more targets and lower toxicity. AIM OF THIS REVIEW: This review presents an overview of the pathogenesis of glaucoma in both modern and traditional medicines, and summarizes the therapeutic effect of TCM on glaucoma including their formula, crude drugs and active components, and also the application of acupuncture. METHODS: A collection and collation of relevant scientific articles from different scientific databases was performed regarding TCM and its application on glaucoma. The therapeutic effects of TCM were summarized and analyzed according to the existing experimental and clinical researches, while the GSE26299 database were employed to screen bioinformatics analysis of glaucoma based on the GEO database chip. RESULTS: There were many positive signs showing that TCM could increase the survival rate of retinal ganglion cells, which may be related to its regulation of microcirculation, oxidative stress, and the immune system. Hence, TCM plays an active role in treating glaucoma. In addition, the bioinformatics analysis predicted that the pathogenesis of glaucoma might be related to p53, MAPK, NF-κB signal, as well as other pathways by KEGG analysis, and the results from bioinformatics analysis predicted that PIK3R6, FGF1, and TYRP1 etc. CONCLUSION: TCM exerts definite effects on preventing and treating ocular disease. It could alleviate and treat glaucoma in various ways. The differentiation syndrome should thus be taken as the basis to propose appropriate treatment options of TCM making their application on glaucoma more popular.


Assuntos
Terapia por Acupuntura , Medicamentos de Ervas Chinesas , Glaucoma , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Glaucoma/tratamento farmacológico , Biologia Computacional
5.
Front Pharmacol ; 13: 955219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386218

RESUMO

Background: Hyperuricemia (HUA) is a metabolic disease caused by reduced excretion or increased production of uric acid. This research aims to study the practical components, active targets, and potential mechanism of the "Radix ginseng (RG)-Ziziphus jujube (ZJ)" herb pair through molecular docking, network pharmacology, and animal experiments. Methods: The potential targets of "Radix ginseng (RG)-Ziziphus jujube (ZJ)" herb pair were obtained from the TCMSP database. The therapeutic targets of HUA were acquired from the GendCards, OMIM, PharmGkb, and TTD databases. Protein-protein interaction network (PPI) was constructed in the STRING 11.0 database. The David database was used for enrichment analysis. Molecular Docking was finished by the AutoDock Vina. And we employed Radix ginseng and Ziziphus jujube as raw materials, which would develop a new functional food fresh ginseng paste (FGP) after boiling. In addition, benzbromarone (Ben) (7.8 mg/kg) and allopurinol (All) (5 mg/kg) were used as positive drugs to evaluate the hyperuricemia induced by FGP (400 and 800 mg/kg) potassium oxazine (PO) (100 mg/kg) and hypoxanthine (HX) (500 mg/kg) on mice. Results: The results showed that 25 targets in the "RG-ZJ" herb pair interacted with hyperuricemia. Then protein-protein interaction (PPI) analysis showed that TNF, IL-1ß, and VEGFA were core genes. KEGG enrichment analysis showed that the Toll-like receptor signaling pathway and IL-17 signaling pathway were mainly involved. Meantime, animal experiments showed that FGP could improve the HUA status of mice by reducing serum UA BUN, XO, and liver XO levels (p < 0.05, p < 0.01). Furthermore, we analyzed the main ingredients of FGP by HPLC. We found that the main ingredients of FGP had solid binding activity to the core target of HUA by molecular docking. Conclusion: This study explored the active ingredients and targets of the "RG-ZJ" herb pair on HUA through network pharmacology, molecular docking, and animal experiments. It revealed the improvement of FGP in mice with HUA.

6.
Am J Chin Med ; 50(7): 1927-1944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36056466

RESUMO

Saponins from the roots of Platycodon grandiflorum, an edible medicinal plant, have shown a wide range of beneficial effects on various biological processes. In this study, an animal model was established by a single intraperitoneal injection of cisplatin (20[Formula: see text]mg/kg) for evaluating the protective effects of saponins from the roots of P. grandiflorum (PGS, 15[Formula: see text]mg/kg and 30[Formula: see text]mg/kg) in mice. The results indicated that PGS treatment for 10 days restored the destroyed intestinal mucosal oxidative system, and the loosened junctions of small intestinal villi was significantly improved. In addition, a significant mitigation of apoptotic effects deteriorated by cisplatin exposure in small intestinal villi was observed by immunohischemical staining. Also, western blot showed that PGS could effectively prevent endoplasmic reticulum (ER) stress-induced apoptosis caused by cisplatin in mice by restoring the activity of PERK (an ER kinase)-eIF2[Formula: see text]-ATF4 signal transduction pathway. Furthermore, molecular docking results of main saponins in PGS suggested a better binding ability with target proteins. In summary, the present work revealed the underlying protective mechanisms of PGS on intestinal injury induced by cisplatin in mice.


Assuntos
Platycodon , Saponinas , Camundongos , Animais , Platycodon/química , Saponinas/farmacologia , Saponinas/química , Cisplatino/efeitos adversos , Estresse do Retículo Endoplasmático , Simulação de Acoplamento Molecular , Apoptose , Raízes de Plantas/química
7.
Anat Rec (Hoboken) ; 304(11): 2480-2493, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34431619

RESUMO

The effectiveness and safety of electroacupuncture (EA) for depression have been identified by abundant clinical trials and experimental findings. The c-Jun-NH(2)-terminal kinase (JNK) signaling pathway is considered to be involved in the antidepressant mechanism of EA. However, the antidepressant effect of EA via modulating the expression of c-Fos/activator protein-1 (AP-1) under the condition of JNK inhibition remains unexplored. In this study, we investigated the antidepressant effect and possible mechanism of EA in regulating the expression of c-Fos/AP-1 under the condition of JNK inhibition by SP600125 in rats exposed to chronic unpredictable mild stress (CUMS). The depression-like behaviors were evaluated by the body weight, sucrose preference test (SPT), and open field test (OFT). The expression levels of c-Jun in the hypothalamus, c-Fos in the pituitary gland, and c-Fos and AP-1 in the serum of CUMS induced rat model of depression were detected by ELISA. The results indicated that treatment with EA and fluoxetine can reverse the CUMS-induced depression-like behaviors in rats and can up-regulate the expression levels of c-Jun in the hypothalamus, c-Fos in the pituitary gland, and c-Fos and AP-1 in the serum. Of note, the data demonstrated that SP600125, the inhibitor of JNK signaling pathway, can exert synergistic effect with EA in regulating CUMS-induced abnormal activation of the JNK signaling pathway. The antidepressant effect of EA might be mediated by modulating the expression of c-Fos/AP-1.


Assuntos
Eletroacupuntura , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Depressão/terapia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Fator de Transcrição AP-1/metabolismo
8.
Front Pharmacol ; 12: 692574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025443

RESUMO

Proteolysis targeting chimeric (PROTAC) technology is an effective endogenous protein degradation tool developed in recent years that can ubiquitinate the target proteins through the ubiquitin-proteasome system (UPS) to achieve an effect on tumor growth. A number of literature studies on PROTAC technology have proved an insight into the feasibility of PROTAC technology to degrade target proteins. Additionally, the first oral PROTACs (ARV-110 and ARV-471) have shown encouraging results in clinical trials for prostate and breast cancer treatment, which inspires a greater enthusiasm for PROTAC research. Here we focus on the structures and mechanisms of PROTACs and describe several classes of effective PROTAC degraders based on E3 ligases.

9.
Front Cell Dev Biol ; 8: 233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300595

RESUMO

The p53 tumor suppressor protein and its major negative regulators MDM2 and MDMX oncoproteins form the MDM2/MDMX-p53 circuitry, which plays critical roles in regulating cancer cell growth, proliferation, cell cycle progression, apoptosis, senescence, angiogenesis, and immune response. Recent studies have shown that the stabilities of p53, MDM2, and MDMX are tightly controlled by the ubiquitin-proteasome system. Ubiquitin specific protease 7 (USP7), one of the most studied deubiquitinating enzymes plays a crucial role in protecting MDM2 and MDMX from ubiquitination-mediated proteasomal degradation. USP7 is overexpressed in human cancers and contributes to cancer initiation and progression. USP7 inhibition promotes the degradation of MDM2 and MDMX, activates the p53 signaling, and causes cell cycle arrest and apoptosis, making USP7 a potential target for cancer therapy. Several small-molecule inhibitors of USP7 have been developed and shown promising efficacy in preclinical settings. In the present review, we focus on recent advances in the understanding of the USP7-MDM2/MDMX-p53 network in human cancers as well as the discovery and development of USP7 inhibitors for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA