Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 483: 116835, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38272317

RESUMO

Actin-interacting proteins are important molecules for filament assembly and cytoskeletal signaling within vascular endothelium. Disruption in their interactions causes endothelial pathogenesis through redox imbalance. Actin filament redox regulation remains largely unexplored, in the context of pharmacological treatment. This work focused on the peptidyl methionine (M) redox regulation of actin-interacting proteins, aiming at elucidating its role on governing antioxidative signaling and response. Endothelial EA.hy926 cells were subjected to treatment with salvianolic acid B (Sal B) and tert-butyl-hydroperoxide (tBHP) stimulation. Mass spectrometry was employed to characterize redox status of proteins, including actin, myosin-9, kelch-like erythroid-derived cap-n-collar homology-associated protein 1 (Keap1), plastin-3, prelamin-A/C and vimentin. The protein redox landscape revealed distinct stoichiometric ratios or reaction site transitions mediated by M sulfoxide reductase and reactive oxygen species. In comparison with effects of tBHP stimulation, Sal B treatment prevented oxidation at actin M325, myosin-9 M1489/1565, Keap1 M120, plastin-3 M592, prelamin-A/C M187/371/540 and vimentin M344. For Keap1, reaction site was transitioned within its scaffolding region to the actin ring. These protein M oxidation regulations contributed to the Sal B cytoprotective effects on actin filament. Additionally, regarding the Keap1 homo-dimerization region, Sal B preventive roles against M120 oxidation acted as a primary signal driver to activate nuclear factor erythroid 2-related factor 2 (Nrf2). Transcriptional splicing of non-POU domain-containing octamer-binding protein was validated during the Sal B-mediated overexpression of NAD(P)H dehydrogenase [quinone] 1. This molecular redox regulation of actin-interacting proteins provided valuable insights into the phenolic structures of Sal B analogs, showing potential antioxidative effects on vascular endothelium.


Assuntos
Actinas , Antioxidantes , Benzofuranos , Depsídeos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Actinas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Vimentina/metabolismo , Estresse Oxidativo , Metionina , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Proteínas do Citoesqueleto/metabolismo , Miosinas/metabolismo , Miosinas/farmacologia
2.
J Neuroinflammation ; 20(1): 293, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062440

RESUMO

BACKGROUND: Depression is two-to-three times more frequent among women. The hypothalamus, a sexually dimorphic area, has been implicated in the pathophysiology of depression. Neuroinflammation-induced hypothalamic dysfunction underlies behaviors associated with depression. The lipopolysaccharide (LPS)-induced mouse model of depression has been well-validated in numerous laboratories, including our own, and is widely used to investigate the relationship between neuroinflammation and depression. However, the sex-specific differences in metabolic alterations underlying depression-associated hypothalamic neuroinflammation remain unknown. METHODS: Here, we employed the LPS-induced mouse model of depression to investigate hypothalamic metabolic changes in both male and female mice using a metabolomics approach. Through bioinformatics analysis, we confirmed the molecular pathways and biological processes associated with the identified metabolites. Furthermore, we employed quantitative real-time PCR, enzyme-linked immunosorbent assay, western blotting, and pharmacological interventions to further elucidate the underlying mechanisms. RESULTS: A total of 124 and 61 differential metabolites (DMs) were detected in male and female mice with depressive-like behavior, respectively, compared to their respective sex-matched control groups. Moreover, a comparison between female and male model mice identified 37 DMs. We capitalized on biochemical clustering and functional enrichment analyses to define the major metabolic changes in these DMs. More than 55% of the DMs clustered into lipids and lipid-like molecules, and an imbalance in lipids metabolism was presented in the hypothalamus. Furthermore, steroidogenic pathway was confirmed as a potential sex-specific pathway in the hypothalamus of female mice with depression. Pregnenolone, an upstream component of the steroid hormone biosynthesis pathway, was downregulated in female mice with depressive-like phenotypes but not in males and had considerable relevance to depressive-like behaviors in females. Moreover, exogenous pregnenolone infusion reversed depressive-like behaviors in female mice with depression. The 5α-reductase type I (SRD5A1), a steroidogenic hub enzyme involved in pregnenolone metabolism, was increased in the hypothalamus of female mice with depression. Its inhibition increased hypothalamic pregnenolone levels and ameliorated depressive-like behaviors in female mice with depression. CONCLUSIONS: Our study findings demonstrate a marked sexual dimorphism at the metabolic level in depression, particularly in hypothalamic steroidogenic metabolism, identifying a potential sex-specific pathway in female mice with depressive-like behaviors.


Assuntos
Depressão , Doenças Neuroinflamatórias , Humanos , Camundongos , Masculino , Feminino , Animais , Depressão/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Hipotálamo/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Pregnenolona/metabolismo
3.
Toxicol Appl Pharmacol ; 472: 116571, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269934

RESUMO

Bacterial lipopolysaccharide (LPS) is a toxic stimulant to macrophage inflammation. Inflammation intersects cell metabolism and often directs host immunopathogenesis stress. We aim here at pharmacological discovering of formononetin (FMN) action, to which anti-inflammatory signaling spans across immune membrane receptors and second messenger metabolites. In ANA-1 macrophage stimulated by LPS, and simultaneous treatment with FMN, results show the Toll-like receptor 4 (TLR4) and estrogen receptor (ER) signals, in concert with reactive oxygen species (ROS) and cyclic adenosine monophosphate (cAMP), respectively. LPS stimulates inactivation of the ROS-dependent nuclear factor erythroid 2-related factor 2 (Nrf2) by upregulating TLR4, but it does not affect cAMP. However, FMN treatment not only activates Nrf2 signaling by TLR4 inhibition, but also it activates cAMP-dependent protein kinase activities by upregulating ER. The cAMP activity gives rise to phosphorylation (p-) of protein kinase A, liver kinase B1 and 5'-AMP activated protein kinase (AMPK). Moreover, bidirectional signal crosstalk is amplified between p-AMPK and ROS, as FMN combinational validation with AMPK activator/inhibitor/target small-interfering RNA or ROS scavenger. The signal crosstalk is well positioned serving as the 'plug-in' knot for rather long signaling axis, and the immune-to-metabolic circuit via ER/TLR4 signal transduction. Collectively, convergence of the FMN-activated signals drives significant reduction of cyclooxygenase-2, interleukin-6 and NLR family pyrin domain-containing protein 3, in LPS-stimulated cell. Although anti-inflammatory signaling is specifically related to the immune-type macrophage, the p-AMPK antagonizing effect arises from FMN combination with ROS scavenger H-bond donors. Information of our work assists in predictive traits against macrophage inflammatory challenges, using phytoestrogen discoveries.


Assuntos
Proteínas Quinases Ativadas por AMP , Receptor 4 Toll-Like , Humanos , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Macrófagos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia
4.
Food Chem Toxicol ; 171: 113513, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436616

RESUMO

Mitochondrion-related cardiotoxicity due to cardiotoxin stimuli is closely linked to abnormal activities of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), followed by co-inactivation of nuclear respiratory factor-1(NRF1). Pharmacological interventions targeting mitochondria may be effective for developing agents against cardiotoxicity. Herein, in triptolide-treated H9C2 cardiomyocytes, we observed defective mitochondrial biogenesis and respiration, characterized by depletion of mitochondrial mass and mitochondrial DNA copy number, downregulation of mitochondrial respiratory chain complexes subunits, and disorders of mitochondrial membrane potential and mitochondrial oxidative phosphorylation. Dysregulation of mitochondria led to cardiac pathological features, such as myocardial fiber fracture, intercellular space enlargement, and elevation of serum aspartate aminotransferase, creatine kinase isoenzyme, lactate dehydrogenase, and cardiac troponin I. However, following calycosin treatment, an active compound from Astragali Radix, the mitochondrion-related disorders at both cell and tissue levels were significantly ameliorated, which was facilitated by the activation of PGC-1α via deacetylation, followed by NRF1 co-activation. Calycosin-enhanced PGC-1α deacetylation is impelled by increasing sirtuin-1 expression and NAD+/NADH ratio. PGC-1α/NRF1 signaling in calycosin-mediated mitochondrial biogenesis protection was further confirmed by NRF1 knockdown and PGC-1α inhibition with SR18292. We conclude that calycosin ameliorated triptolide-induced cardiotoxicity by protecting PGC-1α/NRF1-dependent cardiac mitochondrial biogenesis and respiration, which is the druggable pathway for cardiotoxicity mitigation.


Assuntos
Cardiotoxicidade , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Biogênese de Organelas , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6378-6386, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38211994

RESUMO

This paper aims to investigate the protective effect and mechanism of Astragalus membranaceus and Angelica sinensis before and after compatibility against triptolide(TP)-induced hepatotoxicity. The experiment was divided into a blank group, model group, Astragalus membranaceus group, Angelica sinensis group, and compatibility groups with Astragalus membranaceus/Angelica sinensis ratio of 1∶1, 2∶1, and 5∶1. TP-induced hepatotoxicity model was established, and corresponding drug intervention was carried out. The levels of alanine transaminase(ALT), aspartate transaminase(AST), and alkaline phosphatase(ALP) in serum were detected. Pathological injuries of livers were detected by hematoxylin-eosin(HE) staining. The levels of malondialdehyde(MDA), superoxide dismutase(SOD), glutathione peroxidase(GSH-Px), and reduced glutathione(GSH) in the liver were measured. Wes-tern blot method was used to detect the expression of nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(Keap1), peroxisome proliferator-activated receptor gamma, coactivator-1 alpha(PGC-1α), heme oxygenase-1(HO-1), and NAD(P)H quinone dehydrogenase 1(NQO1) in livers. Immunofluorescence was used to detect the expression of Nrf2 and PGC-1α in livers. The results indicated that Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 could significantly reduce the levels of serum AST, ALT, and ALP, improve the pathological damage of liver tissue, increase the levels of GSH and GSH-Px, and reduce the content of MDA in liver tissue. Astragalus membranaceus/Angelica sinensis ratio of 1∶1 and 2∶1 could significantly improve the level of SOD. Astragalus membranaceus and Angelica sinensis before and after compatibility significantly increased the protein expression of HO-1 and NQO1, improved the protein expression of Nrf2 and PGC-1α, and decreased the protein expression of Keap1 in liver tissue. The above results confirmed that the compatibility of Astragalus membranaceus and Angelica sinensis had antioxidant effects by re-gulating Keap1/Nrf2/PGC-1α, and the Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 had stronger antioxidant effect and significantly reduced TP-induced hepatoto-xicity.


Assuntos
Angelica sinensis , Doença Hepática Induzida por Substâncias e Drogas , Diterpenos , Fenantrenos , Humanos , Astragalus propinquus , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Compostos de Epóxi
6.
BMC Complement Med Ther ; 22(1): 32, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101002

RESUMO

BACKGROUND: The incidence rate of invasive candidiasis is high, its treatment is difficult, and the prognosis is poor. In this study, an immunosuppressive mouse model of invasive Candida albicans (C. albicans) infection was constructed to observe the effects of cinnamaldehyde (CA) on the C. albicans cell wall structure and cell wall (1,3)-ß-D-glucan contents. This study provides a theoretical basis for CA treatment to target invasive C. albicans infection. METHODS: Immunosuppressed mice with invasive C. albicans infection were given an oral dosage of CA (240 mg.kg- 1.d- 1) for 14 days. Then, mouse lung tissue samples were collected for detection of the levels of (1,3)-ß-D-glucan and transmission electron microscopy observations, using fluconazole as a positive control and 2% Tween 80 saline as a negative control. RESULTS: The immunosuppressive mouse model of invasive C. albicans infection was successfully established. The levels of (1,3)-ß-D-glucan in the CA treatment group, fluconazole positive control group, invasive C. albicans infection immunosuppressive mouse model group, and 2% Tween 80 normal saline control group were 86.55 ± 126.73 pg/ml, 1985.13 ± 203.56 pg/ml, 5930.57 ± 398.67 pg/ml and 83.36 ± 26.35 pg/ml, respectively. Statistically, the CA treatment group, fluconazole positive control group and invasive C. albicans infection immunosuppressive mouse model group were compared with each other (P < 0.01) and compared with the 2% Tween 80 saline group (P < 0.01), showing that the differences were very significant. Comparison of the CA treatment group with the fluconazole positive control group (P < 0.05) displayed a difference as well. Electron microscopy showed that CA destroyed the cell wall of C. albicans, where the outer layer of the cell wall fell off and became thinner and the nuclei and organelles dissolved, but the cell membrane remained clear and intact. CONCLUSION: CA destroys the cell wall structure of C. albicans by interfering with the synthesis of (1,3)-ß-D-glucan to kill C. albicans. However, CA does not affect the cell membrane. This study provides a theoretical basis for CA treatment to target invasive C. albicans infection.


Assuntos
Acroleína/análogos & derivados , Candidíase/tratamento farmacológico , Glucanos/metabolismo , Acroleína/farmacologia , Animais , Candida albicans , Parede Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Masculino , Camundongos , Camundongos Endogâmicos BALB C
7.
Zhongguo Zhong Yao Za Zhi ; 44(5): 954-961, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-30989855

RESUMO

To compare the blood-cooling and hemostasis effects of Rehmanniae Radix before and after carbonizing on rats with blood heat and hemorrhage syndrome. The blood heat and hemorrhage syndrome rat model was established. Indexes including rectal temperature,whole blood viscosity,plasma viscosity,thrombin time(TT),activated partial thromboplastin time(APTT),prothrombin time(PT),fibrinogen content(FIB),red blood cell(RBC),hemoglobin(Hb),hematocrit(HCT),blood platelet count(PLT),mean platelet volume(MPV),serum IL-1,serum IL-6 and lung histopathology were detected to investigate the blood-cooling and hemostasis effects of Rehmanniae Radix and its carbonized products. Compared with the blank control group,the rectal temperature was significantly increased with rise of the high,middle and low whole blood viscosities and plasma viscosity(P<0.05); both the high and low whole blood restore viscosity and the high and low whole blood relative viscosity were increased significantly(P< 0.05); TT,APTT and PT were notably prolonged with the increase in FIB content(P<0.05); RBC,Hb and HCT increased significantly(P< 0.05); concentrations of serum IL-1 and IL-6 were also increased(P< 0.05) in model group. Additionally,obvious hemorrhages in lung and stomach were observed in rats of the model group. Rehmanniae Radix and its carbonized products can significantly reduce rectal temperature,high middle and low whole blood viscosities and plasma viscosity(P<0.05). TT and APTT were shortened,with lower expression of FIB in group of Rehmannia Radix and its carbonized products. Hemorrhages of lung and stomach were improved by Rehmannia Radix and its carbonized products. The results indicated that Rehmannia Radix before and after carbonizing had the hemostasis and blood-cooling effects by promoting coagulation,improving blood rheology and inhibiting expressions of IL-1 and IL-6.


Assuntos
Coagulação Sanguínea , Medicamentos de Ervas Chinesas/farmacologia , Hemorragia/tratamento farmacológico , Hemostasia , Rehmannia/química , Animais , Viscosidade Sanguínea , Temperatura Corporal , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Tempo de Tromboplastina Parcial , Raízes de Plantas , Ratos , Tempo de Trombina
8.
Chin J Nat Med ; 14(6): 434-40, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27473961

RESUMO

TRPA1 channels are non-selective cation channels that could be activated by plant-derived pungent products, including gingerol, a main active constituent of ginger. Ginger could improve the digestive function; however whether ginger improves the digestive function through activating TRPA1 receptor in gastrointestinal tract has not been investigated. In the present study, gingerol was used to stimulate cell lines (RIN14B or STC-1) while depletion of extracellular calcium. TRPA1 inhibitor (rethenium red) and TRPA1 gene silencing via TRPA1-specific siRNA were also used for mechanistic studies. The intracellular calcium and secretion of serotonin or cholecystokinin were measured by fura-2/AM and ELISA. Stimulation of those cells with gingerol increased intracellular calcium levels and the serotonin or cholecystokinin secretion. The gingerol-induced intracellular calcium increase and secretion (serotonin or cholecystokinin) release were completely blocked by ruthenium red, EGTA, and TRPA1-specific siRNA. In summary, our results suggested that gingerol derived from ginger might improve the digestive function through secretion releasing from endocrine cells of the gut by inducing TRPA1-mediated calcium influx.


Assuntos
Canais de Cálcio/metabolismo , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Extratos Vegetais/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Zingiber officinale/química , Cálcio/metabolismo , Canais de Cálcio/genética , Linhagem Celular , Humanos , Proteínas do Tecido Nervoso/genética , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/genética
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 22(1): 54-6, 2002 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-12940027

RESUMO

The latent root regression model with near-infrared spectra of 40 soybean samples was founded for analyzing the content of soybean protein in this study. The contents of protein in another 32 soybean samples were predicted by this model. The predicting results were compared with PLS, which shows that the latent root regression model can practically be used for the quantitative analysis of the biological samples with near-infrared spectra. This method is a new kind of chemometrics calibration method, which is modified from PCR. Because the method takes the role of sample composition into account when extracting the principal component from the NIR spectra of samples, the model has a good result in analyzing samples. Further more, the results showed that it is necessary to take account of the role of sample composition when building quantitative analysis model using NIR spectra.


Assuntos
Glycine max/química , Proteínas de Soja/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Modelos Químicos , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA