Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
DNA Cell Biol ; 42(7): 399-410, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37347924

RESUMO

Circular RNAs (circRNAs) are generally formed by the back-splicing of precursor mRNA. Increasing evidence implicates the important role of circRNAs in cardiovascular diseases. However, the role of circ-insulin-like growth factor 1 receptor (circIGF1R) in cardiomyocyte (CM) proliferation remains unclear. Here, we investigated the potential role of the circIGF1R in the proliferation of CMs. We found that circIGF1R expression in heart tissues and primary CMs from adult mice was significantly lower than that in neonatal mice at postnatal 1 day (p1). Increased circIGF1R expression was detected in the injured neonatal heart at 0.5 and 1 days post-resection. circIGF1R knockdown significantly decreased the proliferation of primary CMs. Combined prediction software, luciferase reporter gene analysis, and quantitative real time-PCR (qPCR) revealed that circIGF1R interacted with miR-362-5p. A significant increase in miR-362-5p expression was detected in the adult heart compared with that in the neonatal heart. Further, heart injury significantly decreased the expression of miR-362-5p in neonatal mice. Treatment with miR-362-5p mimics significantly suppressed the proliferation of primary CMs, whereas knockdown of miR-362-5p promoted the CMs proliferation. Meanwhile, miR-362-5p silencing can rescue the proliferation inhibition of CMs induced by circIGF1R knockdown. Target prediction and qPCR validation revealed that miR-362-5p significantly inhibited the expression of Phf3 in primary CMs. In addition, decreased Phf3 expression was detected in adult hearts compared with neonatal hearts. Consistently, increased Phf3 expression was detected in injured neonatal hearts compared with that in sham hearts. Knockdown of Phf3 markedly repressed CMs proliferation. Taken together, these findings suggest that circIGF1R might contribute to cardiomyocyte proliferation by promoting Pfh3 expression by sponging miR-362-5p and provide an important experimental basis for the regulation of heart regeneration.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Animais , Camundongos , Miócitos Cardíacos , RNA Circular/genética , Proliferação de Células/genética , MicroRNAs/genética , Linhagem Celular Tumoral
2.
Exp Mol Med ; 55(3): 532-540, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36854772

RESUMO

Vascular calcification is a serious complication of hyperphosphatemia that causes cardiovascular morbidity and mortality. Previous studies have reported that plasmalemmal phosphate (Pi) transporters, such as PiT-1/2, mediate depolarization, Ca2+ influx, oxidative stress, and calcific changes in vascular smooth muscle cells (VSMCs). However, the pathogenic mechanism of mitochondrial Pi uptake in vascular calcification associated with hyperphosphatemia has not been elucidated. We demonstrated that the phosphate carrier (PiC) is the dominant mitochondrial Pi transporter responsible for high Pi-induced superoxide generation, osteogenic gene upregulation, and calcific changes in primary VSMCs isolated from rat aortas. Notably, acute incubation with high Pi markedly increased the protein abundance of PiC via ERK1/2- and mTOR-dependent translational upregulation. Genetic suppression of PiC prevented Pi-induced ERK1/2 activation, superoxide production, osteogenic differentiation, and vascular calcification of VSMCs in vitro and aortic rings ex vivo. Pharmacological inhibition of mitochondrial Pi transport using butyl malonate (BMA) or mersalyl abolished all pathologic changes involved in high Pi-induced vascular calcification. BMA or mersalyl also effectively prevented osteogenic gene upregulation and calcification of aortas from 5/6 subtotal nephrectomized mice fed a high-Pi diet. Our results suggest that mitochondrial Pi uptake via PiC is a critical molecular mechanism mediating mitochondrial superoxide generation and pathogenic calcific changes, which could be a novel therapeutic target for treating vascular calcification associated with hyperphosphatemia.


Assuntos
Hiperfosfatemia , Calcificação Vascular , Ratos , Camundongos , Animais , Hiperfosfatemia/induzido quimicamente , Hiperfosfatemia/complicações , Hiperfosfatemia/patologia , Células Cultivadas , Superóxidos/efeitos adversos , Osteogênese/genética , Mersalil , Fosfatos/efeitos adversos , Calcificação Vascular/etiologia , Calcificação Vascular/patologia , Proteínas de Transporte de Fosfato , Miócitos de Músculo Liso/metabolismo
3.
J Vis Exp ; (189)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36468701

RESUMO

It is known that in adult mammals, the heart has lost its regenerative capacity, making heart failure one of the leading causes of death worldwide. Previous research has demonstrated the regenerative ability of the heart of the adult Xenopus tropicalis, an anuran amphibian with a diploid genome and a close evolutionary relationship with mammals. Additionally, studies have shown that following ventricular apex resection, the heart can regenerate without scarring in X. tropicalis. Consequently, these previous results suggest that X. tropicalis is an appropriate alternative vertebrate model for the study of adult heart regeneration. A surgical model of cardiac regeneration in the adult X. tropicalis is presented herein. Briefly, the frogs were anesthetized and fixed; then, a small incision was made with iridectomy scissors, penetrating the skin and pericardium. Gentle pressure was applied to the ventricle, and the apex of the ventricle was then cut out with scissors. Cardiac injury and regeneration were confirmed by histology at 7-30 days post resection (dpr). This protocol established an apical resection model in adult X. tropicalis, which can be employed to elucidate the mechanisms of adult heart regeneration.


Assuntos
Insuficiência Cardíaca , Traumatismos Cardíacos , Animais , Xenopus , Ventrículos do Coração , Pericárdio , Mamíferos
4.
Elife ; 112022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399125

RESUMO

Cardiovascular disease is the leading cause of death worldwide due to the inability of adult heart to regenerate after injury. N6-methyladenosine (m6A) methylation catalyzed by the enzyme methyltransferase-like 3 (Mettl3) plays an important role in various physiological and pathological bioprocesses. However, the role of m6A in heart regeneration remains largely unclear. To study m6A function in heart regeneration, we modulated Mettl3 expression in vitro and in vivo. Knockdown of Mettl3 significantly increased the proliferation of cardiomyocytes and accelerated heart regeneration following heart injury in neonatal and adult mice. However, Mettl3 overexpression decreased cardiomyocyte proliferation and suppressed heart regeneration in postnatal mice. Conjoint analysis of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq identified Fgf16 as a downstream target of Mettl3-mediated m6A modification during postnatal heart regeneration. RIP-qPCR and luciferase reporter assays revealed that Mettl3 negatively regulates Fgf16 mRNA expression in an m6A-Ythdf2-dependent manner. The silencing of Fgf16 suppressed the proliferation of cardiomyocytes. However, the overexpression of ΔFgf16, in which the m6A consensus sequence was mutated, significantly increased cardiomyocyte proliferation and accelerated heart regeneration in postnatal mice compared with wild-type Fgf16. Our data demonstrate that Mettl3 post-transcriptionally reduces Fgf16 mRNA levels through an m6A-Ythdf2-dependen pathway, thereby controlling cardiomyocyte proliferation and heart regeneration.


Cardiovascular diseases are one of the world's biggest killers. Even for patients who survive a heart attack, recovery can be difficult. This is because ­ unlike some amphibians and fish ­ humans lack the ability to produce enough new heart muscle cells to replace damaged tissue after a heart injury. In other words, the human heart cannot repair itself. Molecules known as messenger RNA (mRNA) carry the 'instructions' from the DNA inside the cell nucleus to its protein-making machinery in the cytoplasm of the cell. These messenger molecules can also be altered by different enzymes that attach or remove chemical groups. These modifications can change the stability of the mRNA, or even 'silence' it altogether by stopping it from interacting with the protein-making machinery, thus halting production of the protein it encodes. For example, a protein called Mettl3 can attach a methyl group to a specific part of the mRNA, causing a reversible mRNA modification known as m6A. This type of alteration has been shown to play a role in many conditions, including heart disease, but it has been unclear whether m6A could also be important for the regeneration of heart tissue. To find out more, Jiang, Liu, Chen et al. studied heart injury in mice of various ages. Newborn mice can regenerate their heart muscle for a short time, but adult mice lack this ability, which makes them a useful model to study heart disease. Analyses of the proteins and mRNAs in mouse heart cells confirmed that both Mettl3 and m6A-modified mRNAs were present. The amount of each also increased with age. Next, experiments in genetically manipulated mice revealed that removing Mettl3 greatly improved tissue repair after heart injury in both newborn and adult mice. In contrast, mouse hearts that produced abnormally high quantities of Mettl3 were unable to regenerate ­ even if the mice were young. Moreover, a detailed analysis of gene activity revealed that Mettl3 was suppressing heart regeneration by decreasing the production of a growth-promoting protein called FGF16. These results reveal a key biological mechanism controlling the heart's ability to repair itself after injury. In the future, Jiang et al. hope that Mettl3 can be harnessed for new, effective therapies to promote heart regeneration in patients suffering from heart disease.


Assuntos
Metiltransferases , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Metilação , Fatores de Transcrição/metabolismo , Proliferação de Células
5.
NPJ Regen Med ; 7(1): 33, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750775

RESUMO

Upon injury, the liver is capable of substantial regeneration from the original tissue until an appropriate functional size. The underlying mechanisms controlling the liver regeneration processes are not well elucidated. Previous studies have proposed that the transcription factor FoxO3 is involved in various liver diseases, but its exact role in the regulation of liver regeneration remains largely unclear. To directly test the detailed role of FoxO3 in liver regeneration, both a constitutive Albumin-Cre driver line and adeno-associated virus serotype 8 (AAV8)-Tbg-Cre (AAV-Cre)-injected adult FoxO3fl/fl mice were subjected to 70% partial hepatectomy (PH). Our data demonstrate that FoxO3 deletion accelerates liver regeneration primarily by limiting polyploidization and promoting the proliferation of hepatocytes during liver regeneration. RNA-seq analysis indicates that FoxO3 deficiency greatly alters the expression of gene sets associated with cell proliferation and apoptosis during liver regeneration. Chromatin immunoprecipitation-PCR (ChIP-PCR) and luciferase reporter assays reveal that FoxO3 promotes the expression of Nox4 but suppresses the expression of Nr4a1 in hepatocytes. AAV8 virus-mediated overexpression of Nox4 and knockdown of Nr4a1 significantly suppressed hepatocyte proliferation and liver regeneration in FoxO3-deficient mice. We demonstrate that FoxO3 negatively controls hepatocyte proliferation through Nox4 upregulation and Nr4a1 downregulation, thereby ensuring appropriate functional regeneration of the liver. Our findings provide novel mechanistic insight into the therapeutic mechanisms of FoxO3 in liver damage and repair.

6.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445344

RESUMO

Thyroid hormones, including 3,5,3'-triiodothyronine (T3), cause a wide spectrum of genomic effects on cellular metabolism and bioenergetic regulation in various tissues. The non-genomic actions of T3 have been reported but are not yet completely understood. Acute T3 treatment significantly enhanced basal, maximal, ATP-linked, and proton-leak oxygen consumption rates (OCRs) of primary differentiated mouse brown adipocytes accompanied with increased protein abundances of uncoupling protein 1 (UCP1) and mitochondrial Ca2+ uniporter (MCU). T3 treatment depolarized the resting mitochondrial membrane potential (Ψm) but augmented oligomycin-induced hyperpolarization in brown adipocytes. Protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were activated by T3, leading to the inhibition of autophagic degradation. Rapamycin, as an mTOR inhibitor, blocked T3-induced autophagic suppression and UCP1 upregulation. T3 increases intracellular Ca2+ concentration ([Ca2+]i) in brown adipocytes. Most of the T3 effects, including mTOR activation, UCP1 upregulation, and OCR increase, were abrogated by intracellular Ca2+ chelation with BAPTA-AM. Calmodulin inhibition with W7 or knockdown of MCU dampened T3-induced mitochondrial activation. Furthermore, edelfosine, a phospholipase C (PLC) inhibitor, prevented T3 from acting on [Ca2+]i, UCP1 abundance, Ψm, and OCR. We suggest that short-term exposure of T3 induces UCP1 upregulation and mitochondrial activation due to PLC-mediated [Ca2+]i elevation in brown adipocytes.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Cálcio/metabolismo , Mitocôndrias/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Tecido Adiposo Marrom/metabolismo , Animais , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos
7.
NPJ Regen Med ; 6(1): 36, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188056

RESUMO

Cardiovascular disease is the leading cause of death in the world due to losing regenerative capacity in the adult heart. Frogs possess remarkable capacities to regenerate multiple organs, including spinal cord, tail, and limb, but the response to heart injury and the underlying molecular mechanism remains largely unclear. Here we demonstrated that cardiomyocyte proliferation greatly contributes to heart regeneration in adult X. tropicalis upon apex resection. Using RNA-seq and qPCR, we found that the expression of Fos-like antigen 1 (Fosl1) was dramatically upregulated in early stage of heart injury. To study Fosl1 function in heart regeneration, its expression was modulated in vitro and in vivo. Overexpression of X. tropicalis Fosl1 significantly promoted the proliferation of cardiomyocyte cell line H9c2. Consistently, endogenous Fosl1 knockdown suppressed the proliferation of H9c2 cells and primary cardiomyocytes isolated from neonatal mice. Taking use of a cardiomyocyte-specific dominant-negative approach, we show that blocking Fosl1 function leads to defects in cardiomyocyte proliferation during X. tropicalis heart regeneration. We further show that knockdown of Fosl1 can suppress the capacity of heart regeneration in neonatal mice, but overexpression of Fosl1 can improve the cardiac function in adult mouse upon myocardium infarction. Co-immunoprecipitation, luciferase reporter, and ChIP analysis reveal that Fosl1 interacts with JunB and promotes the expression of Cyclin-T1 (Ccnt1) during heart regeneration. In conclusion, we demonstrated that Fosl1 plays an essential role in cardiomyocyte proliferation and heart regeneration in vertebrates, at least in part, through interaction with JunB, thereby promoting expression of cell cycle regulators including Ccnt1.

8.
Am J Physiol Heart Circ Physiol ; 319(6): H1302-H1312, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095057

RESUMO

Hyperphosphatemia is the primary risk factor for vascular calcification, which is closely associated with cardiovascular morbidity and mortality. Recent evidence showed that oxidative stress by high inorganic phosphate (Pi) mediates calcific changes in vascular smooth muscle cells (VSMCs). However, intracellular signaling responsible for Pi-induced oxidative stress remains unclear. Here, we investigated molecular mechanisms of Pi-induced oxidative stress related with intracellular Ca2+ ([Ca2+]i) disturbance, which is critical for calcification of VSMCs. VSMCs isolated from rat thoracic aorta or A7r5 cells were incubated with high Pi-containing medium. Extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin were activated by high Pi that was required for vascular calcification. High Pi upregulated expressions of type III sodium-phosphate cotransporters PiT-1 and -2 and stimulated their trafficking to the plasma membrane. Interestingly, high Pi increased [Ca2+]i exclusively dependent on extracellular Na+ and Ca2+ as well as PiT-1/2 abundance. Furthermore, high-Pi induced plasma membrane depolarization mediated by PiT-1/2. Pretreatment with verapamil, as a voltage-gated Ca2+ channel (VGCC) blocker, inhibited Pi-induced [Ca2+]i elevation, oxidative stress, ERK activation, and osteogenic differentiation. These protective effects were reiterated by extracellular Ca2+-free condition, intracellular Ca2+ chelation, or suppression of oxidative stress. Mitochondrial superoxide scavenger also effectively abrogated ERK activation and osteogenic differentiation of VSMCs by high Pi. Taking all these together, we suggest that high Pi activates depolarization-triggered Ca2+ influx via VGCC, and subsequent [Ca2+]i increase elicits oxidative stress and osteogenic differentiation. PiT-1/2 mediates Pi-induced [Ca2+]i overload and oxidative stress but in turn, PiT-1/2 is upregulated by consequences of these alterations.NEW & NOTEWORTHY The novel findings of this study are type III sodium-phosphate cotransporters PiT-1 and -2-dependent depolarization by high Pi, leading to Ca2+ entry via voltage-gated Ca2+ channels in vascular smooth muscle cells. Cytosolic Ca2+ increase and subsequent oxidative stress are indispensable for osteogenic differentiation and calcification. In addition, plasmalemmal abundance of PiT-1/2 relies on Ca2+ overload and oxidative stress, establishing a positive feedback loop. Identification of mechanistic components of a vicious cycle could provide novel therapeutic strategies against vascular calcification in hyperphosphatemic patients.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Hiperfosfatemia/induzido quimicamente , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatos/toxicidade , Calcificação Vascular/induzido quimicamente , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Hiperfosfatemia/metabolismo , Hiperfosfatemia/patologia , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos Sprague-Dawley , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
9.
Radiat Environ Biophys ; 59(4): 733-741, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914274

RESUMO

While radiation-induced lung injury (RILI) is known to be progressed by Th2 skewed, pro-inflammatory immune response, there have been few therapeutic attempts through Th1 immune modulation. We investigated whether the immunostimulant CpG-oligodeoxynucleotide (CpG-ODN) would be effective against RILI by way of measuring reactive oxygen species (ROS) and nitric oxides (NO), histopathology, micro-three-dimensional computer tomography (CT), and cytokine profiling. We found that KSK CpG-ODN (K-CpG) significantly reduced histopathological fibrosis when compared to the positive control (PC) group (p < 0.01). The levels of ROS production in serum and splenocyte of PC group were significantly higher than that of K-CpG group (p < 0.01). The production of nitric oxide (NO) in CpG-ODNs group was higher than that of PC group. Last, cytokine profiling illustrated that the protein concentrations of Th1-type cytokines such as IL-12 and TNF-α as well as Th2-type cytokine IL-5 in K-CpG group inclined to be significantly (p < 0.001 or p < 0.01) higher than those of in PC group. Collectively, our study clearly indicates that K-CpG is effective against RILI in mice by modulating the innate immune response. To our knowledge, this is the first note on anti-RILI effect of human type, K-CpG, clinically implying the potential of immunotherapy for RILI control.


Assuntos
Lesão Pulmonar/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Lesões Experimentais por Radiação/tratamento farmacológico , Animais , Citocinas/sangue , Feminino , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Óxido Nítrico/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/imunologia , Lesões Experimentais por Radiação/patologia , Espécies Reativas de Oxigênio/imunologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/efeitos da radiação , Tomografia Computadorizada por Raios X , Raios X
10.
Gene Expr Patterns ; 35: 119091, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770608

RESUMO

The forkhead-box transcription factors of O subfamily (FOXO) play important roles in regulation of various biological functions. We cloned foxo1, foxo3, foxo4, and foxo6 from Xenopus tropicalis (hereafter X. tropicalis), and examined their expression in embryos and adult tissues. Maternal transcripts of foxo1 and foxo3 genes are detected within the animal half of the early embryo, their zygotic transcripts show distinct patterns. At late tailbud stages, foxo1 expression is observed mainly in eye, brain, branchial arches, and pronephros. In addition to eye, brain, branchial arches and pronephros, foxo3 expression is also evident in heart and somites. Foxo4 expression was not detected in oocytes. At late tailbud stages, foxo4 is mainly expressed in eye, brain, branchial arches and otic vesicle. Foxo6 expression was not detectable until stage 36, with a specific expression in nasal pits. Obvious expression of foxo1, foxo3 and foxo4, but not foxo6, is detected by RT-PCR both in oocytes and in embryos at examined stages. The expression of foxo1, foxo3 and foxo4 is observed in all tested adult tissues including heart, muscle, liver, lung, stomach and small intestine, while foxo6 is only detectable in stomach and small intestine. The differential expression pattern of foxo genes suggests that they exert distinct functions during embryonic development and in various organs of X. tropicalis.


Assuntos
Proteínas de Anfíbios/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Anfíbios/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Brônquios/embriologia , Brônquios/metabolismo , Olho/embriologia , Olho/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Coração/embriologia , Rim/embriologia , Rim/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Miocárdio/metabolismo , Xenopus
11.
Aging Cell ; 18(5): e12990, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264342

RESUMO

Paraquat (PQ) promotes cell senescence in brain tissue, which contributes to Parkinson's disease. Furthermore, PQ induces heart failure and oxidative damage, but it remains unknown whether and how PQ induces cardiac aging. Here, we demonstrate that PQ induces phenotypes associated with senescence of cardiomyocyte cell lines and results in cardiac aging-associated phenotypes including cardiac remodeling and dysfunction in vivo. Moreover, PQ inhibits the activation of Forkhead box O3 (FoxO3), an important longevity factor, both in vitro and in vivo. We found that PQ-induced senescence phenotypes, including proliferation inhibition, apoptosis, senescence-associated ß-galactosidase activity, and p16INK4a expression, were significantly enhanced by FoxO3 deficiency in cardiomyocytes. Notably, PQ-induced cardiac remolding, apoptosis, oxidative damage, and p16INK4a expression in hearts were exacerbated by FoxO3 deficiency. In addition, both in vitro deficiency and in vivo deficiency of FoxO3 greatly suppressed the activation of antioxidant enzymes including catalase (CAT) and superoxide dismutase 2 (SOD2) in the presence of PQ, which was accompanied by attenuation in cardiac function. The direct in vivo binding of FoxO3 to the promoters of the Cat and Sod2 genes in the heart was verified by chromatin immunoprecipitation (ChIP). Functionally, overexpression of Cat or Sod2 alleviated the PQ-induced senescence phenotypes in FoxO3-deficient cardiomyocyte cell lines. Overexpression of FoxO3 and CAT in hearts greatly suppressed the PQ-induced heart injury and phenotypes associated with aging. Collectively, these results suggest that FoxO3 protects the heart against an aging-associated decline in cardiac function in mice exposed to PQ, at least in part by upregulating the expression of antioxidant enzymes and suppressing oxidative stress.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Proteína Forkhead Box O3/metabolismo , Paraquat/antagonistas & inibidores , Substâncias Protetoras/metabolismo , Regulação para Cima , Envelhecimento/efeitos dos fármacos , Animais , Catalase/genética , Catalase/metabolismo , Coração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Paraquat/farmacologia , Fenótipo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Gene Expr Patterns ; 34: 119056, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31121318

RESUMO

Fos-like antigens (Fosl) including Fosl1 and Fosl2 exclusively heterodimerize with Jun members to form AP-1 complex, thereby participating in various cellular progresses including cell cycle regulation. However, expression patterns of these two genes during embryonic development remains largely unknown. In the present study, both temporal and spatial expression patterns of fosl1 and fosl2 were examined during embryonic development of Xenopus tropicalis. Real-time quantitative PCR results showed that the expression of the two genes was increased from stage 2 to stage 42. However, expression level of fosl1 is much higher than that of fosl2 at stage 42. Whole-mount in situ hybridization showed that fosl1 was expressed in eyes, branchial arch, notochord, otic vesicle, and liver. However, fosl2 was expressed in lung primordium from stage 34 to stage 38, in addition to the moderate expression in eyes and branchial arch at stage 42. Thus, the developmental expression patterns of these two fosl genes is different in Xenopus embryos. These results provide a basis for further functional study of these two genes.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas Proto-Oncogênicas c-fos/genética , Xenopus/embriologia , Sequência de Aminoácidos/genética , Animais , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos , Xenopus/genética , Proteínas de Xenopus/genética
13.
Zool Res ; 40(2): 102-107, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30127333

RESUMO

Protein arginine methyltransferases (PRMTs) are involved in many cellular processes via the arginine methylation of histone or non-histone proteins. We examined the expression patterns of prmt4, prmt7, and prmt9 during embryogenesis in Xenopus using whole-mount in situ hybridization and quantitative reverse transcription polymerase chain reaction (RT-PCR). Xenopus prmt4 and prmt7 were expressed in the neural crest, brain, and spinal cord, and also detected in the eye, branchial arches, and heart at the tailbud stage. Specific prmt9 signals were not detected in Xenopus embryos until the late tailbud stage when weak expression was observed in the branchial arches. Quantitative RT-PCR indicated that the expressions of prmt4 and prmt7 were up-regulated during the neurula stage, whereas prmt9 maintained its low expression until the late tailbud stage, consistent with the whole-mount in situ hybridization results. Thus, the developmental expression patterns of these three prmt genes in Xenopus embryos provide a basis for further functional study of such genes.


Assuntos
Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteína-Arginina N-Metiltransferases/genética
14.
FASEB J ; : fj201800093, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897811

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system has emerged as a powerful tool for knock-in of DNA fragments via donor plasmid and homology-independent DNA repair mechanism; however, conventional integration includes unnecessary plasmid backbone and may result in the unfaithful expression of the modified endogenous genes. Here, we report an efficient and precise CRISPR/Cas9-mediated integration strategy using a donor plasmid that harbors 2 of the same cleavage sites that flank the cassette at both sides. After the delivery of donor plasmid, together with Cas9 mRNA and guide RNA, into cells or fertilized eggs, concurrent cleavages at both sides of the exogenous cassette and the desired chromosomal site result in precise targeted integration without plasmid backbone. We successfully used this approach to precisely integrate the EGFP reporter gene into the myh6 locus or the GAPDH locus in Xenopus tropicalis or human cells, respectively. Furthermore, we demonstrate that replacing conventional terminators with the endogenous 3UTR of target genes in the cassette greatly improves the expression of reporter gene after integration. Our efficient and precise method will be useful for a variety of targeted genome modifications, not only in X. tropicalis, but also in mammalian cells, and can be readily adapted to many other organisms.-Mao, C.-Z., Zheng, L., Zhou, Y.-M., Wu, H.-Y., Xia, J.-B., Liang, C.-Q., Guo, X.-F., Peng, W.-T., Zhao, H., Cai, W.-B., Kim, S.-K., Park, K.-S., Cai, D.-Q., Qi, X.-F. CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis.

15.
J Cell Physiol ; 233(5): 4245-4257, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29057537

RESUMO

Unmethylated CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) ligand, has been shown to protect against myocardial ischemia/reperfusion injury. However, the potential effects of CpG-ODN on myocardial infarction (MI) induced by persistent ischemia remains unclear. Here, we investigated whether and how CpG-ODN preconditioning protects against MI in mice. C57BL/6 mice were treated with CpG-ODN by i.p. injection 2 hr prior to MI induction, and cardiac function, and histology were analyzed 2 weeks after MI. Both 1826-CpG and KSK-CpG preconditioning significantly improved the left ventricular (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS) when compared with non-CpG controls. Histological analysis further confirmed the cardioprotection of CpG-ODN preconditioning. In vitro studies further demonstrated that CpG-ODN preconditioning increases cardiomyocyte survival under hypoxic/ischemic conditions by enhancing stress tolerance through TLR9-mediated inhibition of the SERCA2/ATP and activation of AMPK pathways. Moreover, CpG-ODN preconditioning significantly increased angiogenesis in the infarcted myocardium compared with non-CpG. However, persistent TLR9 activation mediated by lentiviral infection failed to improve cardiac function after MI. Although CpG-ODN preconditioning increased angiogenesis in vitro, both the persistent stimulation of CpG-ODN and stable overexpression of TLR9 suppressed the tube formation of cardiac microvascular endothelial cells. CpG-ODN preconditioning significantly protects cardiac function against MI by suppressing the energy metabolism of cardiomyocytes and promoting angiogenesis. Our data also indicate that CpG-ODN preconditioning may be useful in MI therapy.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Receptor Toll-Like 9/genética
16.
Sci Rep ; 7(1): 13273, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038511

RESUMO

Vascular endothelial growth factor (VEGF) plays important roles in improvement of cardiac function following myocardial infarction (MI). However, the lack of a steerable delivery system of VEGF targeting the infarcted myocardium reduces the therapeutic efficacy and safety. Here, we constructed a series of lentiviral vector systems which could express a fusion protein consisted of a collagen-binding domain (CBD) and hVEGF (CBDhVEGF), under the control of 5HRE-hCMVmp (5HRE), the hypoxia-inducible promoter consists of five copies of the hypoxia-responsive element (HRE) and a human cytomegalovirus minimal promoter (hCMVmp). We demonstrated that 5HRE has the comparable ability to strongly drive CBDhVEGF under hypoxic condition as the ubiquitous CMV promoter, but it can hardly drive target gene under normoxic condition. 5HRE-drived CBDhVEGF specifically bound to type I collagen and significantly promoted the viability of HUVEC cells. Moreover, after injection of lentivirus into heart of mouse with MI, CBDhVEGF was mainly retained in infarcted myocardium where containing rich collagen and significantly improved angiogenesis and cardiac function when compared with hVEGF. Moreover, CBDhVEGF mediated by lentivirus has little leakage from infarcted zone into blood than hVEGF. Taken together, our results indicate that 5HRE-CBDhVEGF lentiviral vector system could improve cardiac function in the collagen-targeting and hypoxia-inducible manners.


Assuntos
Colágeno/genética , Técnicas de Transferência de Genes , Hipóxia/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/metabolismo , Lentivirus/genética , Camundongos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/terapia , Regiões Promotoras Genéticas , Elementos de Resposta , Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Gene Expr Patterns ; 23-24: 1-6, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034797

RESUMO

Recent studies suggest that ribosome-binding protein 1 (RRBP1) is involved in multiple diseases such as tumorigenesis and cardiomyopathies. However, its function during embryonic development remains largely unknown. We searched Xenopus laevis database with human RRBP1 protein sequence and identified two cDNA sequences encoding Xenopus orthologs of RRBP1 including rrbp1a (NM_001089623) and rrbp1b (NM_001092468). Both genes were firstly detected at blastula stage 8 with weak signals in animal hemisphere by whole mount in situ hybridization. Evident expression of rrbp1 was mainly detected in cement gland and notochord at neurula and tailbud stages. Heart expression of rrbp1 was detected at stage 36. RT-PCR results indicated that very weak expression of rrbp1a was firstly detected in oocytes, followed by increasing expression until stage 39. Differently, very weak expression of rrbp1b was firstly observed at stage 2, and then maintained at a lower level to stage 17 followed by an intense expression from stages 19-39. Moreover, both expression profiles were also different in adult tissues. This study reports Xenopus rrbp1 expression during early embryonic development and in adult tissues. Our study will facilitate the functional analysis of Rrbp1 family during embryonic development.


Assuntos
Proteínas de Transporte/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Transcriptoma , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
18.
Exp Mol Pathol ; 100(2): 257-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26835911

RESUMO

CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL10/farmacologia , Células Endoteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Receptores CXCR3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Hipóxia Celular , Células Cultivadas , Vasos Coronários/citologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores CXCR3/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
19.
Cytokine ; 81: 63-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26891076

RESUMO

CXCL10, the chemokine with potent chemotactic activity on immune cells and other non-immune cells expressing its receptor CXCR3, has been demonstrated to involve in myocardial infarction, which was resulted from hypoxia/ischemia. The cardiac microvascular endothelial cells (CMECs) are the first cell type which is implicated by hypoxia/ischemia. However, the potential molecular mechanism by which hypoxia/ischemia regulates the expression of CXCL10 in CMECs remains unclear. In the present study, the expression of CXCL10 was firstly examined by real-time PCR and ELISA analysis. Several potential binding sites (BS) for transcription factors including NF-kappaB (NFkB), HIF1 alpha (HIF1α) and FoxO3a were identified in the promoter region of CXCL10 gene from -2000 bp to -1 bp using bioinformatics software. Luciferase reporter gene vectors for CXCL10 promoter and for activation of above transcription factors were constructed. The activation of NFkB, hypoxia-inducible transcription factor-1 alpha (HIF-1α) and FoxO3a was also analyzed by Western blotting. It was shown that the production of CXCL10 in CMECs was significantly increased by hypoxia/ischemia treatment, in parallel with the activation of CXCL10 promoter examined by reporter gene vector system. Furthermore, transcription factors including NFkB, HIF1α and FoxO3a were activated by hypoxia/ischemia in CMECs. However, over-expression of NFkB, but not that of HIF1α or FoxO3a, significantly promoted the activation of CXCL10 promoter reporter gene. These findings indicated that CXCL10 production in CMECs was significantly increased by hypoxia/ischemia, at least in part, through activation of NFkB pathway and subsequently binding to CXCL10 promoter, finally promoted the transcription of CXCL10 gene.


Assuntos
Quimiocina CXCL10/metabolismo , Vasos Coronários/citologia , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Western Blotting , Hipóxia Celular , Células Cultivadas , Quimiocina CXCL10/genética , Ensaio de Imunoadsorção Enzimática , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Cytokine ; 76(2): 131-137, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26082022

RESUMO

While Active Hexose Correlated Compound (AHCC) and CpG oligodeoxynucleotide (ODN) are separately known to modulate oxidative stress and immune responses in cancer patients, the combined effect of these two compounds is unknown. To clarify this, we investigated whether AHCC plus KSK-CpG ODN would be therapeutic in B16 melanoma mouse model, if so, and how in reduction-oxidation (redox) balance and cytokines network. We found that treatment groups (AHCC only, KSK-CpG ODN only and AHCC/KSK-CpG ODN) markedly reduced (p<0.001) tumor size when compared to the positive control (PC) group. The total white blood cell (WBC) of AHCC only and KSK-CpG ODN only-treated groups showed significant lower counts than that of PC group. Next, the production of nitric oxide (NO) was significantly increased (p<0.01) in AHCC/KSK-CpG ODN group compared to the PC group. Further, the redox balance was improved in AHCC/KSK-CpG ODN group through significantly low (p<0.001) reactive oxygen species (ROS) production and significantly high (p<0.05) glutathione peroxidase (GPx) activity compared to the PC group. Finally, AHCC/KSK-CpG ODN (p<0.01) and KSK-CpG ODN (p<0.001)-treated groups augmented tumor immune surveillance as shown by significantly increased level of anti-inflammatory cytokine (IL-10) and significantly decreased (p<0.05) level of pro-tumorigenic IL-6 of AHCC/KSK-CpG ODN treated group as compared to the PC group. Collectively, our study indicates therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with KSK-CpG ODN in B16 melanoma murine model via balancing redox and cytokines network.


Assuntos
Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Oligodesoxirribonucleotídeos/uso terapêutico , Polissacarídeos/uso terapêutico , Animais , Linhagem Celular Tumoral , Citocinas/sangue , Citocinas/química , Citocinas/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Glutationa Peroxidase/sangue , Interleucina-10/sangue , Interleucina-12/sangue , Interleucina-6/sangue , Células Matadoras Naturais/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico/sangue , Oxirredução , Estresse Oxidativo , Distribuição Aleatória , Espécies Reativas de Oxigênio/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA