Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
ACS Synth Biol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780992

RESUMO

Electroactive bacteria, exemplified by Shewanella oneidensis MR-1, have garnered significant attention due to their unique extracellular electron-transfer (EET) capabilities, which are crucial for energy recovery and pollutant conversion. However, the practical application of MR-1 is constrained by its EET efficiency, a key limiting factor, due to the complexity of research methodologies and the challenges associated with the practical use of gene editing tools. To address this challenge, a novel gene integration system, INTEGRATE, was developed, utilizing CRISPR-mediated transposase technologies for precise genomic insertion within the S. oneidensis MR-1 genome. This system facilitated the insertion of extensive gene segments at different sites of the Shewanella genome with an efficiency approaching 100%. The inserted cargo genes could be kept stable on the genome after continuous cultivation. The enhancement of the organism's EET efficiency was realized through two primary strategies: the integration of the phenazine-1-carboxylic acid synthesis gene cluster to augment EET efficiency and the targeted disruption of the SO3350 gene to promote anodic biofilm development. Collectively, our findings highlight the potential of utilizing the INTEGRATE system for strategic genomic alterations, presenting a synergistic approach to augment the functionality of electroactive bacteria within bioelectrochemical systems.

2.
PLoS One ; 19(3): e0298258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446823

RESUMO

Clonal integration of defense or stress signal induced systemic resistance in leaf of interconnected ramets. However, similar effects of stress signal in root are poorly understood within clonal network. Clonal fragments of Centella asiaticas with first-young, second-mature, third-old and fourth-oldest ramets were used to investigate transportation or sharing of stress signal among interconnected ramets suffering from low water availability. Compared with control, oxidative stress in root of the first-young, second-mature and third-old ramets was significantly alleviated by exogenous ABA application to the fourth-oldest ramets as well as enhancement of antioxidant enzyme (SOD, POD, CAT and APX) activities and osmoregulation ability. Surface area and volume in root of the first-young ramets were significantly increased and total length in root of the third-old ramets was significantly decreased. POD activity in root of the fourth-oldest and third-old ramets was significantly enhanced by exogenous ABA application to the first-young ramets. Meanwhile, total length and surface area in root of the fourth-oldest and third-old ramets were significantly decreased. Ratio of belowground to aboveground biomass in the whole clonal fragments was significantly increased by exogenous ABA application to the fourth-oldest or first-young ramets. It is suggested that transportation or sharing of stress signal may induce systemic resistance in root of interconnected ramets. Specially, transportation or sharing of stress signal against phloem flow was observed in the experiment. Possible explanation is that rapid recovery of foliar photosynthesis in first-young ramets subjected to exogenous ABA application can partially reverse phloem flow within clonal network. Thus, our experiment provides insight into ecological implication on clonal integration of stress signal.


Assuntos
Antioxidantes , Centella , Ansiedade , Biomassa , Osmorregulação
3.
ACS Appl Bio Mater ; 7(3): 1801-1809, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38416780

RESUMO

Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Materiais Biocompatíveis , Engenharia Celular , Transporte de Íons
4.
Open Life Sci ; 19(1): 20220816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314140

RESUMO

Remifentanil-induced hyperalgesia (RIH) is a common clinical phenomenon that limits the use of opioids in pain management. Esketamine, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has been shown to prevent and treat RIH. However, the underlying effect mechanism of esketamine on RIH remains unclear. This study aimed to investigate the role and mechanism of esketamine in preventing and treating RIH based on the NMDA receptor-CaMKIIα pathway. In this study, an experimental animal model was used to determine the therapeutic effect of esketamine on pain elimination. Moreover, the mRNA transcription and protein expression levels of CaMKII and GluN2B were investigated to offer evidence of the protective capability of esketamine in ameliorating RIH. The results demonstrated that esketamine attenuated RIH by inhibiting CaMKII phosphorylation and downstream signaling pathways mediated by the NMDA receptor. Furthermore, ketamine reversed the upregulation of spinal CaMKII induced by remifentanil. These findings suggest that the NMDA receptor-CaMKII pathway plays a critical role in the development of RIH, and ketamine's effect on this pathway may provide a new therapeutic approach for the prevention and treatment of RIH.

5.
Phytomedicine ; 126: 155448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394736

RESUMO

BACKGROUND: Acrylamide (ACR) is a widely used compound that is known to be neurotoxic to both experimental animals and humans, causing nerve damage. The widespread presence of ACR in the environment and food means that the toxic risk to human health can no longer be ignored. Rosmarinic acid (RA), a natural polyphenolic compound extracted from the perilla plant, exhibits anti-inflammatory, antioxidant, and other properties. It has also been demon strated to possess promising potential in neuroprotection. However, its role and potential mechanism in treating ACR induced neurotoxicity are still elusive. PURPOSE: This study explores whether RA can improve ACR induced neurotoxicity and its possible mechanism. METHODS: The behavioral method was used to study RA effect on ACR exposed mice's neurological function. We studied its potential mechanism through metabolomics, Nissl staining, HE staining, immunohistochemical analysis, and Western blot. RESULTS: RA pretreatment reversed the increase in mouse landing foot splay and decrease in spontaneous activity caused by 3 weeks of exposure to 50 mg/kg/d ACR. Further experiments demonstrated that RA could prevent ACR induced neuronal apoptosis, significantly downregulate nuclear factor-κB and tumor necrosis factor-α expression, and inhibit NOD-like receptor protein 3 inflammasome activation, thereby reducing inflammation as confirmed by metabolomics results. Additionally, RA treatment prevented endoplasmic reticulum stress (ERS) caused by ACR exposure, as evidenced by the reversal of significant P-IRE1α,TRAF2,CHOP expression increase. CONCLUSION: RA alleviates ACR induced neurotoxicity by inhibiting ERS and inflammation. These results provide a deeper understanding of the mechanism of ACR induced neurotoxicity and propose a potential new treatment method.


Assuntos
Estresse Oxidativo , Ácido Rosmarínico , Camundongos , Humanos , Animais , Acrilamida/toxicidade , Endorribonucleases , Proteínas Serina-Treonina Quinases , Hipocampo , Inflamação/tratamento farmacológico , Estresse do Retículo Endoplasmático
6.
J Org Chem ; 88(23): 16511-16519, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972539

RESUMO

The first synthesis of ustusal A as well as expeditious access to (-)-albrassitriol is described as featuring a singlet oxygen [4 + 2] cycloaddition, achieving the desired stereoselectivity for the 1,4-cis-hydroxyl groups. Transformation of (+)-sclareolide to III followed by a key Horner-Wadsworth-Emmons (HWE) reaction and stereospecific allylic oxidation facilitated the first synthesis of elegansin D. The biological evaluation of these natural products together with seven elegansin D analogues was performed, among which several elegansin D analogues exhibited potential anticancer activity against liver cancer HepG2 cells (IC50 = 11.99-25.58 µM) with low cytotoxicity on normal liver HL7702 cells (IC50 > 100 µM).


Assuntos
Estereoisomerismo , Oxirredução
7.
World J Clin Cases ; 11(29): 7214-7220, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37946787

RESUMO

BACKGROUND: Aggressive angiomyolipoma is an extremely rare benign mesenchymal tumor that was originally described as a locally recurrent mucinous spindle cell tumour. Aggressive angiomyolipoma originates from myofibroblasts, vascular smooth muscle cells, or fibroblasts, and displays various phenotypes of myofibroblasts and abnormal muscle arteries. Aggressive angiomyolipoma was first identified in 1983 and fewer than 50 male patients have been reported to date. It is an extremely rare mesenchymal tumour and often confused with other diseases. Patients with epididymal aggressive angiomyolipoma lack typical symptoms, most of which occur incidentally, although some patients may experience mild pain, discomfort, and swelling. Pain may be exacerbated by pressure from the mass. CASE SUMMARY: A 66-year-old male was admitted to the hospital on January 14, 2022 with chief complaint of swelling in the left scrotum for one year. There was no apparent cause for the swelling. The patient did not consult with any doctor or receive any treatment for the swelling. The enlarged scrotum increased in size gradually until it reached approximately the size of a goose egg, and was accompanied by discomfort and swelling of the left cavity of the scrotum. The patient had no history of any testicular trauma, infection, or urinary tract infection. The patient urinated freely, 1-2 times at night, without urgency, dysuria (painful urination), or haematuria. There was no significant family history of malignancy. The patient underwent excision of the enlarged tumour and the left epididymis under general anaesthesia on January 18, 2022. Twelve months of follow-up revealed no recurrence. The patient was satisfied with the treatment. CONCLUSION: Aggressive angiomyolipoma is extremely rare clinically and often confused with other diseases. The pathogenesis of aggressive angiomyolipoma is unclear and the clinical presentation is mostly a painless enlarged mass. The diagnosis of aggressive angiomyolipoma requires a combination of medical history, preoperative imaging such as computed tomography and magnetic resonance imaging, cytological examination and preoperative and postoperative pathological biopsy. The preferred treatment is surgery, with the possibility of a new alternative treatment option after hormonal therapy. Aggressive angiomyolipoma should be considered in the differential diagnosis of parametrial tumors of the male genital area that present as clinically significant masses. The high recurrence rate of aggressive angiomyolipoma may be related to incomplete tumor resection, and patients with aggressive angiomyolipoma are advised to undergo annual postoperative follow-up and imaging for recurrence.

8.
ACS Synth Biol ; 12(11): 3454-3462, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37856147

RESUMO

Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, Vibrio natriegens, a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes. The key genes encoding the PHB biosynthesis pathway of V. natriegens were identified through base editing and overexpressed. The metabolically engineered strain showed 166-fold higher PHB content (34.95 wt %) than the wide type when using glycerol as a substrate. Enhanced PHB production was also achieved when other sugars were used as feedstock. Importantly, it outperformed the engineered Escherichia coli MG1655 in PHB productivity (0.053 g/L/h) and tolerance to toxic substances in crude glycerol, without obvious activity decline under nonsterilized fermentation conditions. Our work demonstrates the great potential of engineered V. natriegens for low-cost PHB bioproduction and lays a foundation for exploiting this strain as a next-generation model chassis microorganism in synthetic biology.


Assuntos
Glicerol , Poli-Hidroxibutiratos , Vibrio , Glicerol/metabolismo , Fermentação , Hidroxibutiratos/metabolismo
9.
World J Stem Cells ; 15(9): 947-959, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37900941

RESUMO

BACKGROUND: Rapid wound healing remains a pressing clinical challenge, necessitating studies to hasten this process. A promising approach involves the utilization of human umbilical cord mesenchymal stem cells (hUC-MSCs) derived exosomes. The hypothesis of this study was that these exosomes, when loaded onto a gelatin sponge, a common hemostatic material, would enhance hemostasis and accelerate wound healing. AIM: To investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes. METHODS: Ultracentrifugation was used to extract exosomes from hUC-MSCs. Nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blot techniques were used to validate the exosomes. In vitro experiments were performed using L929 cells to evaluate the cytotoxicity of the exosomes and their impact on cell growth and survival. New Zealand rabbits were used for skin irritation experiments to assess whether they caused adverse skin reactions. Hemolysis test was conducted using a 2% rabbit red blood cell suspension to detect whether they caused hemolysis. Moreover, in vivo experiments were carried out by implanting a gelatin sponge loaded with exosomes subcutaneously in Sprague-Dawley (SD) rats to perform biocompatibility tests. In addition, coagulation index test was conducted to evaluate their impact on blood coagulation. Meanwhile, SD rat liver defect hemostasis model and full-thickness skin defect model were used to study whether the gelatin sponge loaded with exosomes effectively stopped bleeding and promoted wound healing. RESULTS: The NTA, TEM, and western blot experimental results confirmed that exosomes were successfully isolated from hUC-MSCs. The gelatin sponge loaded with exosomes did not exhibit significant cell toxicity, skin irritation, or hemolysis, and they demonstrated good compatibility in SD rats. Additionally, the effectiveness of the gelatin sponge loaded with exosomes in hemostasis and wound healing was validated. The results of the coagulation index experiment indicated that the gelatin sponge loaded with exosomes had significantly better coagulation effect compared to the regular gelatin sponge, and they showed excellent hemostatic performance in a liver defect hemostasis model. Finally, the full-thickness skin defect healing experiment results showed significant improvement in the healing process of wounds treated with the gelatin sponge loaded with exosomes compared to other groups. CONCLUSION: Collectively, the gelatin sponge loaded with hUC-MSCs-derived exosomes is safe and efficacious for promoting hemostasis and accelerating wound healing, warranting further clinical application.

10.
Int Immunopharmacol ; 124(Pt B): 110835, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717320

RESUMO

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes demyelination, neuronal damage and white matter loss, but there is still no known cure. Exosomes are 30-200 nm-sized double-layered membrane vesicles that can easily cross the blood-brain barrier (BBB). Exosomes from umbilical cord mesenchymal stem cells(UMSCs) have been found to treat experimental autoimmune encephalomyelitis (EAE) through the action of anti-inflammatory and immunomodulatory, but its clinical translation has been hampered by their inefficacious accumulation in CNS. Therefore, we developed a TAxI-exos, also known as a TAxI-peptide-chimeric UMSC-exos, for CNS-specific accumulation and curative effect in EAE. We used the EAE model in vivo as well as active T cell and BV-2 cell models in vitro to explore the efficacy and mechanisms. Exosomes from UMSCs with TAxI or DiR labels were given to EAE mice in one dosage (150 g) prior to the peak at day 15. The mice were sacrificed on day 30 so that spinal cords, spleens, and blood could be taken for analysis of demyelination, inflammation, microglia, T-cell subset proportions, and inflammatory cytokine expression. In vitro, PBMCs and splenocytes isolated from healthy C57BL/6 mice were activated and incubated with 0.15 mg/mL of UMSC-exos or TAxI-exos for immune mechanism investigations. Activated BV-2 cells were used to investigate the targeting and controlling polarization ability and mechanism of UMSC-exos and TAxI-exos. As expected, TAxI-exos exhibited significantly greater therapeutic action in EAE mice than UMSC-exos due to their improved targeting-ability. The medication reduced T-cell subset proportions and inflammation, reduced active-microglia proportions and promoted M1 to M2 microglial cell polarization through TNF pathway, upregulated IL-4, IL-10, TGF-ß, and IDO-1 expression, and downregulated IL-2, IL-6, IL-17A, IFN-γ, and TNF-α. The CNS-targeting properties of TAxI-exos and their capacity to inhibit degenerative processes in EAE mice have considerable potential therapeutic value for MS and other CNS illnesses.


Assuntos
Encefalomielite Autoimune Experimental , Exossomos , Esclerose Múltipla , Camundongos , Animais , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Sistema Nervoso Central , Inflamação/metabolismo , Citocinas/metabolismo , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo
11.
Heliyon ; 9(8): e18491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576283

RESUMO

Major depressive disorder (MDD) with diabetes mellitus (DM) significantly reduces the quality of the patient's life, and currently, there is no effective treatment. This study explored the feasibility of Glucagon-like peptide-1 (GLP-1) in treating MDD combined with DM. The protective effects of GLP-1 on mouse hippocampal neuronal cell line HT22 cultured with corticosterone (CORT) and high glucose (HG) were assessed. HT22 cells were cultured with CORT + HG to construct a cell model of MDD combined with DM. Cell viability and cell apoptosis/necrocytosis were detected by CCK-8 assay and flow cytometry/confocal laser scanning microscopy, respectively, after treatment with GLP-1. In addition, BDNF and neurotransmitter levels, lactic dehydrogenase (LDH) and glucose levels, and proteins of cAMP-CREB-BDNF signal pathway in the culture supernatants were measured through an enzyme-linked immunosorbent assay and colorimetric assays and Western blot, respectively. The ideal intervention combination to construct a cell model of MDD combined with DM was CORT 200 µM and HG 50 mM for 48 h. After treatment of 50 nM GLP-1 for 48 h, the model+50 nM GLP-1 group's apoptosis and necrocytosis rates and LDH and glucose concentrations in the culture supernatants decreased significantly compared with the model group. However, the BDNF, 5-hydroxytryptamine (5-HT), dopamine (DA), norepinephrine (NE), PKA, p-CREB, and p-Trkb concentrations in the culture supernatants increased significantly. GLP-1 functioned against CORT + HG-induced toxicity by activating the cAMP-CREB-BDNF signaling pathway in hippocampal neuronal cells.

12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1171-1178, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37551494

RESUMO

OBJECTIVE: To explore molecular mechanisms by which umbilical cord-derived mesenchymal stem cells suppress the development of GVHD after bone marrow hematopoietic stem cell transplantation. METHODS: A mouse model of aGVHD was constructed after bone marrow hematopoietic stem cell transplantation, and the umbilical cord-derived mesenchymal stem cells were cultured, and then injected into the aGVHD mouse model, so as to investigate its prophylactic efficacy. Prophylactic effect of the exosomes isolated from umbilical cord-derived mesenchymal stem cells on aGVHD mice was assessed. Sequencing analysis of miRNA from exosomes was performed. RESULTS: aGVHD model was successfully constructed after hematopoietic stem cell transplantation. By injecting umbilical cord-derived mesenchymal stem cells into the GVHD mouse model, it was found that the treatment significantly prolonged survival time of mice compared to the untreated group. Injection exosomes derived from umbilical cord-derived mesenchymal stem cells into the GVHD mouse model significantly prolonged the survival time of mice compared to the untreated group. High-throughput sequencing data showed that microRNA such as miR-21 in exosomes isolated from umbilical cord-derived mesenchymal stem cells, which mainly affected the signaling pathways such as cell adhesion, RNA degradation. CONCLUSION: The umbilical cord-derived mesenchymal stem cells can prevent the occurrence of aGVHD after HSCT, which is mediate by MicroRNA in the exosomes derived from umbilical cord-derived mesenchymal stem cells.

13.
Microbiol Resour Announc ; 12(8): e0034923, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37395667

RESUMO

A complete genome is presented for Microbacterium proteolyticum ustc, a member of the Gram-positive order Micrococcales of the phylum Actinomycetota that is resistant to high concentrations of heavy metals and participates in metal detoxification. The genome consists of one plasmid and one chromosome.

14.
Free Radic Biol Med ; 204: 313-324, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201634

RESUMO

Aristolochic acids are widely distributed in the plants of Aristolochiaceae family and Asarum species. Aristolochic acid I (AAI) is the most frequent compound of aristolochic acids, which can accumulate in the soil, and then contaminates crops and water and enters the human body. Research has shown that AAI affects the reproductive system. However, the mechanism of AAI's effects on the ovaries at the tissue level still needs to be clarified. In this research, we found AAI exposure reduced the body and ovarian growth in mice, decreased the ovarian coefficient, prevented follicular development, and increased atretic follicles. Further experiments showed that AAI upregulated nuclear factor-κB and tumor necrosis factor-α expression, activated the NOD-like receptor protein 3 inflammasome, and led to ovarian inflammation and fibrosis. AAI also affected mitochondrial complex function and the balance between mitochondrial fusion and division. Metabolomic results also showed ovarian inflammation and mitochondrial dysfunction due to AAI exposure. These disruptions reduced the oocyte developmental potential by forming abnormal microtubule organizing centers and expressing abnormal BubR1 to destroy spindle assembly. In summary, AAI exposure triggers ovarian inflammation and fibrosis, affecting the oocyte developmental potential.


Assuntos
Ácidos Aristolóquicos , Inflamassomos , Humanos , Camundongos , Animais , Inflamassomos/genética , Ácidos Aristolóquicos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Homeostase , Mitocôndrias/metabolismo , Fibrose , Inflamação
15.
Bioorg Chem ; 138: 106619, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37253310

RESUMO

Three new diterpenoids with an unusual carbon skeleton, pedilanins A-C (1-3), and nine new jatrophane diterpenoids, pedilanins D-L (4-12), along with five known ones (13-17), were isolated from Pedilanthus tithymaloides. Compounds 1-3 characterize an unprecedented tricyclo[10.3.0.02,9]pentadecane skeleton. Compounds 4-8 are rare examples of the jatrophanes bearing a cyclic hemiketal substructure. Their structures were determined by an extensive analysis of HRESIMS, NMR, quantum-chemical calculation, DP4+ probability, and X-ray crystallographic data. In the bioassay, compounds 1-12 dramatically reversed multidrug resistance in cancer cells with the fold-reversals ranging from 17.9 to 396.8 at the noncytotoxic concentration of 10 µM. The mechanism results indicated that compounds 2 and 3 inhibited the P-glycoprotein (Pgp) transporter function, thus reversing the drug resistance.


Assuntos
Diterpenos , Euphorbia , Estrutura Molecular , Euphorbia/química , Resistência a Múltiplos Medicamentos , Compostos Radiofarmacêuticos/farmacologia , Diterpenos/farmacologia , Diterpenos/química
16.
Food Chem Toxicol ; 176: 113736, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940772

RESUMO

Chloroacetonitrile (CAN) is a halogenated acetonitrile often produced while disinfecting drinking water. Previous studies have shown that maternal exposure to CAN interferes with fetal development; however, the adverse effects on maternal oocytes remain unknown. In this study, in vitro exposure of mouse oocytes to CAN reduced maturation significantly. Transcriptomics analysis showed that CAN altered the expression of multiple oocyte genes, especially those associated with the protein folding process. CAN exposure induced reactive oxygen species production, accompanied by endoplasmic reticulum (ER) stress and increased glucose regulated protein 78, C/EBP homologous protein and activating transcription factor 6 expression. Moreover, our results indicated that spindle morphology was impaired after CAN exposure. CAN disrupted polo-like kinase 1, pericentrin and p-Aurora A distribution, which may be an origin inducer that disrupts spindle assemble. Furthermore, exposure to CAN in vivo impaired follicular development. Taken together, our findings indicate that CAN exposure induces ER stress and affects spindle assembly in mouse oocytes.


Assuntos
Estresse do Retículo Endoplasmático , Oócitos , Feminino , Camundongos , Animais , Acetonitrilas , Ciclo Celular
17.
Proteomics ; 23(1): e2200204, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408942

RESUMO

Exosomes derived from mesenchymal stem cells (MSCs) have been used for cancer treatment, however, an in-depth analysis of the exosomal proteomes is lacking. In this manuscript, we use the diaPASEF (parallel accumulation serial fragmentation combined with the data-independent acquisition) method to quantify exosomes derived from human umbilical cord mesenchymal stem cells (UCMSCs) and rat bone marrow stem cells (BMSCs), resulting in identification of 4200 human proteins and 5362 rat proteins. Comparison of human exosomal proteins and total cellular proteins reveals that some proteins exist in the exosomes exclusively that can be served as potential markers for exosomes. Quantitative proteomic analysis of exosomes from different passages of BMSCs shows that the proteins involved in TGF-ß signaling pathway are regulated in abundance, which could be markers for the therapeutic ability of BMSC exosomes. Collectively, the data presented by this study can be a resource for further study of exosome research.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Humanos , Animais , Exossomos/metabolismo , Proteômica , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Células da Medula Óssea/metabolismo , MicroRNAs/metabolismo
18.
Toxicon ; 221: 106964, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372154

RESUMO

Triptolide is a major active ingredient isolated from the traditional Chinese medicine Tripterygium wilfordii, which has anti-inflammatory, anti-cancer, and immunomodulatory effects. However, in clinical studies, triptolide has toxic side effects on the heart, kidney, liver and reproductive organs. With respect to female reproductive toxicity, damaging effects of triptolide on the ovary have been reported, but it has remained unknown whether oocytes are affected by triptolide. Therefore, this study established a concentration gradient of triptolide exposure in mice using 0 (control), 30, 60, and 90 µg triptolide/kg body weight/day administered by gavage. Triptolide administration for 28 d reduced body weight and ovarian weight and affected the developmental potential of oocytes. The triptolide-treated group exhibited meiotic failure of oocytes due to impaired spindle assembly, chromosome alignment, and tubulin stability. Triptolide was also found to induce mitochondrial dysfunction, autophagy and early apoptosis, iron homeostasis, and abnormal histone modifications. These adverse effects could be associated with oxidative stress induced by triptolide. In conclusion, our findings suggest detrimental effects of triptolide on mouse oocytes and, thus, on female reproduction.


Assuntos
Fenantrenos , Feminino , Camundongos , Animais , Fenantrenos/toxicidade , Oócitos , Estresse Oxidativo , Apoptose , Peso Corporal
19.
Environ Pollut ; 316(Pt 2): 120662, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395906

RESUMO

3-monochloro-1,2-propanediol (3-MCPD) is a food contaminant believed to be harmful to human health. Previous studies showed that 3-MCPD exerts toxic effects in multiple tissues, but whether 3-MCPD affects female reproductive function remained unknown. Here, using mouse gastric lavage models, we report that 3-MCPD exposure for four weeks affected body growth, decreased the ovary/body weight ratio, and increased atretic follicle numbers. Expression levels of follicular development-related factors decreased. Further studies found that ovaries from 3-MCPD exposed mice had activated the Transforming Growth Factor-ß (TGF-ß) signaling pathway and promoted ovarian fibrosis. Increased TNF-α, IL-1 and NF-κB expression also indicated the occurrence of ovarian inflammation. Exposure to 3-MCPD stimulated the caspase pathway and enhanced granulosa cell apoptosis. Consistent with disrupted ovarian homeostasis, 3-MCPD exposure interfered with mitochondrial function, generated more reactive oxygen species, increased ferrous ion and lipid peroxidation levels, and resulted in decreased oocyte development potential. Collectively, these findings indicated that 3-MCPD exposure induced ovarian inflammation and fibrosis, and caused disorders of mitochondrial function and ferrous ion homeostasis in oocytes, which consequently disturbed follicle maturation and reduced oocyte quality.


Assuntos
Ovário , alfa-Cloridrina , Humanos , Camundongos , Feminino , Animais , Oócitos , Modelos Animais de Doenças , Ferro , Fibrose , Inflamação
20.
Front Cell Infect Microbiol ; 12: 959029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405969

RESUMO

Zika virus (ZIKV) is a globally transmitted mosquito-borne pathogen, and no effective treatment or vaccine is available yet. Lipophagy, a selective autophagy targeting lipid droplets (LDs), is an emerging subject in cellular lipid metabolism and energy homeostasis. However, the regulatory mechanism of lipid metabolism and the role of lipophagy in Zika virus infection remain largely unknown. Here, we demonstrated that ZIKV induced lipophagy by activating unc-51-like kinase 1 (ULK1) through activation of 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) in Huh7 cells. Upon ZIKV infection, the average size and triglyceride content of LDs significantly decreased. Moreover, ZIKV infection significantly increased lysosomal biosynthesis and LD-lysosome fusion. The activities of AMPK at Thr-172 and ULK1 at Ser-556 were increased in ZIKV-infected cells and closely correlated with lipophagy induction. Silencing of AMPK expression inhibited ZIKV infection, autophagy induction, and LD-lysosome fusion and decreased the triglyceride content of the cells. The activities of mammalian target of rapamycin (mTOR) at Ser-2448 and ULK1 at Ser-757 were suppressed independently of AMPK during ZIKV infection. Therefore, ZIKV infection triggers AMPK-mediated lipophagy, and the LD-related lipid metabolism during ZIKV infection is mainly regulated via the AMPK-ULK1 signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Infecção por Zika virus , Zika virus , Humanos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Transdução de Sinais , Triglicerídeos , Mamíferos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA