Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 4923-4939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828201

RESUMO

Purpose: In recent years, exosomes have been proved to be used to treat many diseases. However, due to the lack of uniform quality control standards for exosomes, the safety of exosomes is still a problem to be solved, especially now more and more exosomes are used in clinical trials, and its non-clinical safety evaluation is particularly important. However, there is no safety evaluation standard for exosomes at present. Therefore, this study will refer to the evaluation criteria of therapeutic biological products, adopt non-human primates to evaluate the non-clinical safety of human umbilical cord mesenchymal stem cell exosomes from the general pharmacology and immunotoxicity, aiming at establishing a safety evaluation system of exosomes and providing reference for the clinical application of exosomes in the future. Methods: 3.85 × 1012 exosomes derived from human umbilical cord mesenchymal stem cells were injected into cynomolgus monkeys intravenously. The changes of general clinical conditions, hematology, immunoglobulin, Th1/Th2 cytokines, T lymphocytes and B lymphocytes, and immune organs were observed before and within 14 days after injection. Results: The results showed that exosomes did not have obvious pathological effects on the general clinical conditions, blood, coagulation function, organ coefficient, immunoglobulin, Th1/Th2 cytokines, lymphocytes, major organs, and major immune organs (spleen, thymus, bone marrow) of cynomolgus monkeys. However, the number of granulocyte-macrophage colonies in exosomes group was significantly higher than that in control group. Conclusion: To sum up, the general pharmacological results and immunotoxicity results showed that the injection of 3.85 × 1012 exosomes may have no obvious adverse reactions to cynomolgus monkeys. This dose of exosomes is relatively safe for treatment, which provides basis research for non-clinical safety evaluation of exosomes and provides reliable research basis for future clinical application of exosomes.


Assuntos
Exossomos , Macaca fascicularis , Células-Tronco Mesenquimais , Cordão Umbilical , Animais , Exossomos/química , Células-Tronco Mesenquimais/citologia , Humanos , Cordão Umbilical/citologia , Masculino , Feminino , Citocinas/metabolismo
2.
Phytomedicine ; 126: 155448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394736

RESUMO

BACKGROUND: Acrylamide (ACR) is a widely used compound that is known to be neurotoxic to both experimental animals and humans, causing nerve damage. The widespread presence of ACR in the environment and food means that the toxic risk to human health can no longer be ignored. Rosmarinic acid (RA), a natural polyphenolic compound extracted from the perilla plant, exhibits anti-inflammatory, antioxidant, and other properties. It has also been demon strated to possess promising potential in neuroprotection. However, its role and potential mechanism in treating ACR induced neurotoxicity are still elusive. PURPOSE: This study explores whether RA can improve ACR induced neurotoxicity and its possible mechanism. METHODS: The behavioral method was used to study RA effect on ACR exposed mice's neurological function. We studied its potential mechanism through metabolomics, Nissl staining, HE staining, immunohistochemical analysis, and Western blot. RESULTS: RA pretreatment reversed the increase in mouse landing foot splay and decrease in spontaneous activity caused by 3 weeks of exposure to 50 mg/kg/d ACR. Further experiments demonstrated that RA could prevent ACR induced neuronal apoptosis, significantly downregulate nuclear factor-κB and tumor necrosis factor-α expression, and inhibit NOD-like receptor protein 3 inflammasome activation, thereby reducing inflammation as confirmed by metabolomics results. Additionally, RA treatment prevented endoplasmic reticulum stress (ERS) caused by ACR exposure, as evidenced by the reversal of significant P-IRE1α,TRAF2,CHOP expression increase. CONCLUSION: RA alleviates ACR induced neurotoxicity by inhibiting ERS and inflammation. These results provide a deeper understanding of the mechanism of ACR induced neurotoxicity and propose a potential new treatment method.


Assuntos
Estresse Oxidativo , Ácido Rosmarínico , Camundongos , Humanos , Animais , Acrilamida/toxicidade , Endorribonucleases , Proteínas Serina-Treonina Quinases , Hipocampo , Inflamação/tratamento farmacológico , Estresse do Retículo Endoplasmático
3.
J Org Chem ; 88(23): 16511-16519, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972539

RESUMO

The first synthesis of ustusal A as well as expeditious access to (-)-albrassitriol is described as featuring a singlet oxygen [4 + 2] cycloaddition, achieving the desired stereoselectivity for the 1,4-cis-hydroxyl groups. Transformation of (+)-sclareolide to III followed by a key Horner-Wadsworth-Emmons (HWE) reaction and stereospecific allylic oxidation facilitated the first synthesis of elegansin D. The biological evaluation of these natural products together with seven elegansin D analogues was performed, among which several elegansin D analogues exhibited potential anticancer activity against liver cancer HepG2 cells (IC50 = 11.99-25.58 µM) with low cytotoxicity on normal liver HL7702 cells (IC50 > 100 µM).


Assuntos
Estereoisomerismo , Oxirredução
4.
World J Stem Cells ; 15(9): 947-959, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37900941

RESUMO

BACKGROUND: Rapid wound healing remains a pressing clinical challenge, necessitating studies to hasten this process. A promising approach involves the utilization of human umbilical cord mesenchymal stem cells (hUC-MSCs) derived exosomes. The hypothesis of this study was that these exosomes, when loaded onto a gelatin sponge, a common hemostatic material, would enhance hemostasis and accelerate wound healing. AIM: To investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes. METHODS: Ultracentrifugation was used to extract exosomes from hUC-MSCs. Nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blot techniques were used to validate the exosomes. In vitro experiments were performed using L929 cells to evaluate the cytotoxicity of the exosomes and their impact on cell growth and survival. New Zealand rabbits were used for skin irritation experiments to assess whether they caused adverse skin reactions. Hemolysis test was conducted using a 2% rabbit red blood cell suspension to detect whether they caused hemolysis. Moreover, in vivo experiments were carried out by implanting a gelatin sponge loaded with exosomes subcutaneously in Sprague-Dawley (SD) rats to perform biocompatibility tests. In addition, coagulation index test was conducted to evaluate their impact on blood coagulation. Meanwhile, SD rat liver defect hemostasis model and full-thickness skin defect model were used to study whether the gelatin sponge loaded with exosomes effectively stopped bleeding and promoted wound healing. RESULTS: The NTA, TEM, and western blot experimental results confirmed that exosomes were successfully isolated from hUC-MSCs. The gelatin sponge loaded with exosomes did not exhibit significant cell toxicity, skin irritation, or hemolysis, and they demonstrated good compatibility in SD rats. Additionally, the effectiveness of the gelatin sponge loaded with exosomes in hemostasis and wound healing was validated. The results of the coagulation index experiment indicated that the gelatin sponge loaded with exosomes had significantly better coagulation effect compared to the regular gelatin sponge, and they showed excellent hemostatic performance in a liver defect hemostasis model. Finally, the full-thickness skin defect healing experiment results showed significant improvement in the healing process of wounds treated with the gelatin sponge loaded with exosomes compared to other groups. CONCLUSION: Collectively, the gelatin sponge loaded with hUC-MSCs-derived exosomes is safe and efficacious for promoting hemostasis and accelerating wound healing, warranting further clinical application.

5.
Int Immunopharmacol ; 124(Pt B): 110835, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717320

RESUMO

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes demyelination, neuronal damage and white matter loss, but there is still no known cure. Exosomes are 30-200 nm-sized double-layered membrane vesicles that can easily cross the blood-brain barrier (BBB). Exosomes from umbilical cord mesenchymal stem cells(UMSCs) have been found to treat experimental autoimmune encephalomyelitis (EAE) through the action of anti-inflammatory and immunomodulatory, but its clinical translation has been hampered by their inefficacious accumulation in CNS. Therefore, we developed a TAxI-exos, also known as a TAxI-peptide-chimeric UMSC-exos, for CNS-specific accumulation and curative effect in EAE. We used the EAE model in vivo as well as active T cell and BV-2 cell models in vitro to explore the efficacy and mechanisms. Exosomes from UMSCs with TAxI or DiR labels were given to EAE mice in one dosage (150 g) prior to the peak at day 15. The mice were sacrificed on day 30 so that spinal cords, spleens, and blood could be taken for analysis of demyelination, inflammation, microglia, T-cell subset proportions, and inflammatory cytokine expression. In vitro, PBMCs and splenocytes isolated from healthy C57BL/6 mice were activated and incubated with 0.15 mg/mL of UMSC-exos or TAxI-exos for immune mechanism investigations. Activated BV-2 cells were used to investigate the targeting and controlling polarization ability and mechanism of UMSC-exos and TAxI-exos. As expected, TAxI-exos exhibited significantly greater therapeutic action in EAE mice than UMSC-exos due to their improved targeting-ability. The medication reduced T-cell subset proportions and inflammation, reduced active-microglia proportions and promoted M1 to M2 microglial cell polarization through TNF pathway, upregulated IL-4, IL-10, TGF-ß, and IDO-1 expression, and downregulated IL-2, IL-6, IL-17A, IFN-γ, and TNF-α. The CNS-targeting properties of TAxI-exos and their capacity to inhibit degenerative processes in EAE mice have considerable potential therapeutic value for MS and other CNS illnesses.


Assuntos
Encefalomielite Autoimune Experimental , Exossomos , Esclerose Múltipla , Camundongos , Animais , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Sistema Nervoso Central , Inflamação/metabolismo , Citocinas/metabolismo , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1171-1178, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37551494

RESUMO

OBJECTIVE: To explore molecular mechanisms by which umbilical cord-derived mesenchymal stem cells suppress the development of GVHD after bone marrow hematopoietic stem cell transplantation. METHODS: A mouse model of aGVHD was constructed after bone marrow hematopoietic stem cell transplantation, and the umbilical cord-derived mesenchymal stem cells were cultured, and then injected into the aGVHD mouse model, so as to investigate its prophylactic efficacy. Prophylactic effect of the exosomes isolated from umbilical cord-derived mesenchymal stem cells on aGVHD mice was assessed. Sequencing analysis of miRNA from exosomes was performed. RESULTS: aGVHD model was successfully constructed after hematopoietic stem cell transplantation. By injecting umbilical cord-derived mesenchymal stem cells into the GVHD mouse model, it was found that the treatment significantly prolonged survival time of mice compared to the untreated group. Injection exosomes derived from umbilical cord-derived mesenchymal stem cells into the GVHD mouse model significantly prolonged the survival time of mice compared to the untreated group. High-throughput sequencing data showed that microRNA such as miR-21 in exosomes isolated from umbilical cord-derived mesenchymal stem cells, which mainly affected the signaling pathways such as cell adhesion, RNA degradation. CONCLUSION: The umbilical cord-derived mesenchymal stem cells can prevent the occurrence of aGVHD after HSCT, which is mediate by MicroRNA in the exosomes derived from umbilical cord-derived mesenchymal stem cells.

7.
Free Radic Biol Med ; 204: 313-324, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201634

RESUMO

Aristolochic acids are widely distributed in the plants of Aristolochiaceae family and Asarum species. Aristolochic acid I (AAI) is the most frequent compound of aristolochic acids, which can accumulate in the soil, and then contaminates crops and water and enters the human body. Research has shown that AAI affects the reproductive system. However, the mechanism of AAI's effects on the ovaries at the tissue level still needs to be clarified. In this research, we found AAI exposure reduced the body and ovarian growth in mice, decreased the ovarian coefficient, prevented follicular development, and increased atretic follicles. Further experiments showed that AAI upregulated nuclear factor-κB and tumor necrosis factor-α expression, activated the NOD-like receptor protein 3 inflammasome, and led to ovarian inflammation and fibrosis. AAI also affected mitochondrial complex function and the balance between mitochondrial fusion and division. Metabolomic results also showed ovarian inflammation and mitochondrial dysfunction due to AAI exposure. These disruptions reduced the oocyte developmental potential by forming abnormal microtubule organizing centers and expressing abnormal BubR1 to destroy spindle assembly. In summary, AAI exposure triggers ovarian inflammation and fibrosis, affecting the oocyte developmental potential.


Assuntos
Ácidos Aristolóquicos , Inflamassomos , Humanos , Camundongos , Animais , Inflamassomos/genética , Ácidos Aristolóquicos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Homeostase , Mitocôndrias/metabolismo , Fibrose , Inflamação
8.
Food Chem Toxicol ; 176: 113736, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940772

RESUMO

Chloroacetonitrile (CAN) is a halogenated acetonitrile often produced while disinfecting drinking water. Previous studies have shown that maternal exposure to CAN interferes with fetal development; however, the adverse effects on maternal oocytes remain unknown. In this study, in vitro exposure of mouse oocytes to CAN reduced maturation significantly. Transcriptomics analysis showed that CAN altered the expression of multiple oocyte genes, especially those associated with the protein folding process. CAN exposure induced reactive oxygen species production, accompanied by endoplasmic reticulum (ER) stress and increased glucose regulated protein 78, C/EBP homologous protein and activating transcription factor 6 expression. Moreover, our results indicated that spindle morphology was impaired after CAN exposure. CAN disrupted polo-like kinase 1, pericentrin and p-Aurora A distribution, which may be an origin inducer that disrupts spindle assemble. Furthermore, exposure to CAN in vivo impaired follicular development. Taken together, our findings indicate that CAN exposure induces ER stress and affects spindle assembly in mouse oocytes.


Assuntos
Estresse do Retículo Endoplasmático , Oócitos , Feminino , Camundongos , Animais , Acetonitrilas , Ciclo Celular
9.
Proteomics ; 23(1): e2200204, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408942

RESUMO

Exosomes derived from mesenchymal stem cells (MSCs) have been used for cancer treatment, however, an in-depth analysis of the exosomal proteomes is lacking. In this manuscript, we use the diaPASEF (parallel accumulation serial fragmentation combined with the data-independent acquisition) method to quantify exosomes derived from human umbilical cord mesenchymal stem cells (UCMSCs) and rat bone marrow stem cells (BMSCs), resulting in identification of 4200 human proteins and 5362 rat proteins. Comparison of human exosomal proteins and total cellular proteins reveals that some proteins exist in the exosomes exclusively that can be served as potential markers for exosomes. Quantitative proteomic analysis of exosomes from different passages of BMSCs shows that the proteins involved in TGF-ß signaling pathway are regulated in abundance, which could be markers for the therapeutic ability of BMSC exosomes. Collectively, the data presented by this study can be a resource for further study of exosome research.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Humanos , Animais , Exossomos/metabolismo , Proteômica , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Células da Medula Óssea/metabolismo , MicroRNAs/metabolismo
10.
Environ Pollut ; 316(Pt 2): 120662, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395906

RESUMO

3-monochloro-1,2-propanediol (3-MCPD) is a food contaminant believed to be harmful to human health. Previous studies showed that 3-MCPD exerts toxic effects in multiple tissues, but whether 3-MCPD affects female reproductive function remained unknown. Here, using mouse gastric lavage models, we report that 3-MCPD exposure for four weeks affected body growth, decreased the ovary/body weight ratio, and increased atretic follicle numbers. Expression levels of follicular development-related factors decreased. Further studies found that ovaries from 3-MCPD exposed mice had activated the Transforming Growth Factor-ß (TGF-ß) signaling pathway and promoted ovarian fibrosis. Increased TNF-α, IL-1 and NF-κB expression also indicated the occurrence of ovarian inflammation. Exposure to 3-MCPD stimulated the caspase pathway and enhanced granulosa cell apoptosis. Consistent with disrupted ovarian homeostasis, 3-MCPD exposure interfered with mitochondrial function, generated more reactive oxygen species, increased ferrous ion and lipid peroxidation levels, and resulted in decreased oocyte development potential. Collectively, these findings indicated that 3-MCPD exposure induced ovarian inflammation and fibrosis, and caused disorders of mitochondrial function and ferrous ion homeostasis in oocytes, which consequently disturbed follicle maturation and reduced oocyte quality.


Assuntos
Ovário , alfa-Cloridrina , Humanos , Camundongos , Feminino , Animais , Oócitos , Modelos Animais de Doenças , Ferro , Fibrose , Inflamação
11.
Toxicon ; 221: 106964, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372154

RESUMO

Triptolide is a major active ingredient isolated from the traditional Chinese medicine Tripterygium wilfordii, which has anti-inflammatory, anti-cancer, and immunomodulatory effects. However, in clinical studies, triptolide has toxic side effects on the heart, kidney, liver and reproductive organs. With respect to female reproductive toxicity, damaging effects of triptolide on the ovary have been reported, but it has remained unknown whether oocytes are affected by triptolide. Therefore, this study established a concentration gradient of triptolide exposure in mice using 0 (control), 30, 60, and 90 µg triptolide/kg body weight/day administered by gavage. Triptolide administration for 28 d reduced body weight and ovarian weight and affected the developmental potential of oocytes. The triptolide-treated group exhibited meiotic failure of oocytes due to impaired spindle assembly, chromosome alignment, and tubulin stability. Triptolide was also found to induce mitochondrial dysfunction, autophagy and early apoptosis, iron homeostasis, and abnormal histone modifications. These adverse effects could be associated with oxidative stress induced by triptolide. In conclusion, our findings suggest detrimental effects of triptolide on mouse oocytes and, thus, on female reproduction.


Assuntos
Fenantrenos , Feminino , Camundongos , Animais , Fenantrenos/toxicidade , Oócitos , Estresse Oxidativo , Apoptose , Peso Corporal
12.
Andrologia ; 54(7): e14438, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35585478

RESUMO

The aim was to investigate the influences of different sperm sources on clinical outcome and neonatal outcome of patients with intracytoplasmic sperm injection. We retrospectively analysed patients who underwent intracytoplasmic sperm injection in our reproductive centre from 2011 to 2020. We screened data on assisted reproductive outcomes from four groups of sources: testicular sperm, epididymal sperm, ejaculated sperm and donor sperm for analysis and divided the non-ejaculated group from the ejaculated group to explore their impact on clinical outcomes and neonatal outcomes. A total of 2139 cycles were involved in this study. There were significant differences in fertilisation rate (77.0% vs. 73.6%, p < .001), cleavage rate (97.4% vs. 94.4%, p < .001) and high-quality embryo rate (52.8% vs. 49.9%, p < .001) between the ejaculated and non-ejaculated sperm groups. There were no significant differences amongst the four groups in biochemical pregnancy rate, clinical pregnancy rate, abortion rate, live birth rate, male-female ratio and single-twin ratio. Different sperm sources did not affect the length, weight or physical defects of newborns amongst the groups. Sperm source did not affect pregnancy and neonatal outcomes of intracytoplasmic sperm injection in general.


Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Recuperação Espermática/efeitos adversos , Espermatozoides
13.
Chem Biol Interact ; 360: 109934, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429547

RESUMO

Acrylonitrile is an organic chemical synthetic monomer that is widely used in food packaging and manufacturing. Animal studies have reported that acrylonitrile is carcinogenic and toxic, but the effects on the female reproductive function in mammals are unknown. In the present study, we report that acrylonitrile treatment affects ovarian homeostasis in mice, resulting in impaired follicular development. Follicles in acrylonitrile-exposed mice exhibited high levels of inflammation and apoptosis, and acrylonitrile treatment interfered with oocyte development. Transcriptomics analysis showed that acrylonitrile altered the expression of oocyte genes related to apoptosis, oxidative stress, endoplasmic reticulum stress, and autophagy. Further molecular tests revealed that acrylonitrile induced early apoptosis, DNA damage, elevated levels of reactive oxygen species, endoplasmic reticulum abnormalities, and lysosomal aggregation. We also observed disruption of mitochondrial structure and distribution and depolarization of membrane potential. Finally, acrylonitrile treatment in female mice decreased the number and weight of offspring. Altogether, these findings suggest that acrylonitrile impairs the stability of the ovarian internal environment, which in turn affects oocyte development and reduces the number of offspring.


Assuntos
Acrilonitrila , Acrilonitrila/metabolismo , Acrilonitrila/toxicidade , Animais , Apoptose , Feminino , Inflamação/metabolismo , Mamíferos , Camundongos , Mitocôndrias/metabolismo , Oócitos
14.
Chemosphere ; 286(Pt 1): 131625, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303901

RESUMO

Captan is a non-systematic fungicide widely used in agricultural production, and its residues have been found in the environment and daily diet. Previous studies confirmed that captan exerts several toxic effects on tissues, but its effect on the mammalian female reproductive system is unclear. In current study, we reported that captan affected mouse ovarian homeostasis and disrupted female hormone receptor expression, leading to impaired follicular development. Ovarian follicles from the captan exposure group showed an increased level of inflammation, endoplasmic reticulum stress and apoptosis. In addition, captan exposure disrupted oocyte development. Transcriptomic analysis indicated that captan changed multiple genes expression in oocytes, including autophagy and apoptosis. Further molecular testing showed that captan induced oxidative stress and mitochondrial dysfunction, as indicated by the increased level of reactive oxygen species, disrupted mitochondrial structure and distribution, and depolarized membrane potential. Furthermore, captan triggered DNA damage, autophagy and early apoptosis, as shown by the enhanced levels of γ-H2AX, LC3, and Annexin-V and increased expression of related genes. Taken together, these results indicated that captan exposure impairs ovarian homeostasis and subsequently affects oocyte development.


Assuntos
Captana , Oócitos , Animais , Apoptose , Captana/metabolismo , Feminino , Homeostase , Camundongos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
15.
Ecotoxicol Environ Saf ; 224: 112634, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34392153

RESUMO

Nickel is a heavy metal element extensively distributed in the environment and widely used in modern life. Divalent nickel is one of the most widespread forms of nickel and has been reported as toxic to various tissues. However, whether exposure to divalent nickel negatively affects ovarian homeostasis and oocyte quality remains unclear. In this study, we found that 3 weeks of nickel sulfate exposure affected body growth and decreased the weight and coefficient of the ovary, and increased atretic follicles exhibiting enhanced apoptosis in granulosa cells. Further studies have found that nickel sulfate triggered ovarian fibrosis and inflammation via transforming growth factor-ß1 and nuclear factor-κB pathways, and reduced oocyte development ability. In addition, nickel sulfate increased the level of reactive oxygen species, which induced DNA damage and early apoptosis. Moreover, it was found that nickel sulfate caused damage to the mitochondria showing aberrant morphology, distribution and membrane potential while decreased levels of histone methylation. To summarize, our results indicated that nickel sulfate exposure triggered ovarian fibrosis and inflammation and caused structural and functional disorders of mitochondria in oocytes, which consequently disturbed ovarian homeostasis and follicle development and decreased oocyte quality.

16.
J Agric Food Chem ; 69(6): 1942-1952, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33533595

RESUMO

Neonicotinoids are the most widely used insecticides in modern agriculture, and their residues have been found in the environment and food. Previous studies reported that neonicotinoids exert toxic effects in various tissues, but whether they interfered with the female reproductive process remains unknown. In our present research, thiamethoxam was selected as a representative neonicotinoid to establish a mouse toxicity model with gavage. We found that thiamethoxam decreased the ovarian coefficient and disrupted the expression of female hormone receptors, subsequently affecting follicle development. Ovarian granulosa cells from the thiamethoxam exposure group underwent a high level of apoptosis. Using transcriptome analysis, we showed that thiamethoxam exposure altered the expression of multiple oocyte genes related to inflammation, apoptosis, and endoplasmic reticulum stress. Thiamethoxam also adversely affected oocyte and embryo development. Western blotting and fluorescence staining results confirmed that thiamethoxam affected the integrity of DNA, triggered apoptosis, promoted oxidative stress and endoplasmic reticulum stress, and impaired mitochondrial function. Collectively, our results indicated that thiamethoxam exposure disrupts ovarian homeostasis and decreases oocyte quality via endoplasmic reticulum stress and apoptosis induction.


Assuntos
Estresse do Retículo Endoplasmático , Inseticidas , Animais , Feminino , Inseticidas/toxicidade , Camundongos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Oócitos , Tiametoxam
17.
Aging (Albany NY) ; 12(21): 21186-21201, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33130636

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) are pluripotent stromal cells that can differentiate into a variety of cell types, including skin cells. High-throughput sequencing was performed on cells of different ages and cell passage, obtaining their methylation, mRNA expression, and protein profile data. The stemness of each sample was then calculated using the TCGAbiolinks package in R. Co-expression modules were identified using WGCNA, and a crosstalk analysis was performed on the corresponding modules. The ClusterProfile package was used for the functional annotation of module genes. Finally, the regulatory network diagram was visualized using the Cytoscape software. First, a total of 16 modules were identified, where 3 modules were screened that were most relevant to the phenotype. 29 genes were screened in combination of the RNA seq, DNA methylation seq and protein iTRAQ. Finally, a comprehensive landscape comprised of RNA expression, DNA methylation and protein profiles of age relevant ADSCs was constructed. Overall, the different omics of ADSCs were comprehensively analyzed in order to reveal mechanisms pertaining to their growth and development. The effects of age, cell passage, and stemness on the therapeutic effect of ADSCs were explored. Additionally, a theoretical basis for selecting appropriate ADSC donors for regenerative medicine was provided.


Assuntos
Envelhecimento/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Proteoma/metabolismo , Transcriptoma , Adulto Jovem
18.
Stem Cell Res Ther ; 11(1): 310, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698873

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (AD-MSCs) are a type of stem cell that is abundant and widely used. The molecular characteristics of AD-MSCs from different passages from donors of different ages have not been well elucidated. METHODS: Six kinds of AD-MSCs ((E1, E2, E3, Y1, Y2, and Y3) with E denoting cells derived from an elderly patient, Y denoting cells derived from a young patient, and 1, 2, and 3 representing passages 3, 6, and 10) were obtained from human abdominal adipose tissue. We obtained the protein expression profile, the mRNA expression profile, the lncRNA expression profile, and the methylation profile of each kind of AD-MSC by sequencing. After calculating the stemness indices, genes related to stemness were extracted. The multiomics correlation analysis was performed in the stemness-related genes. In addition, short time-series expression miner (STEM) analysis was performed for all cell passages and donor ages. To further explore the biological functions of the stemness-related genes, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, the lncRNA-KEGG network and transcription factor (TF)-KEGG network were constructed based on the RNAInter database and TRRUST v2 database. RESULTS: The stemness of the Y1, E1, and Y2 cells was higher than that of the E2, Y3, and E3 cells. The stemness was the highest for Y1 cells and the lowest for E3 cells. STEM analysis showed that five stemness-related gene clusters were associated with the cell passages, and only one gene cluster was associated with age. The enrichment analysis results showed that the biological processes (BPs) and KEGG pathways were mainly involved in the proliferation, differentiation, and migration of cells. The global regulatory landscape of AD-MSCs was constructed: 25 TFs and 16 lncRNAs regulated 21 KEGG pathways through 27 mRNAs. Furthermore, we obtained a core stemness-related gene set consisting of ITGAV, MAD2L1, and PCNA. These genes were expressed at higher levels in Y1 cells than in E3 cells. CONCLUSION: The multiomics global landscape of stemness-related gene clusters was determined for AD-MSCs, which may be helpful for selecting AD-MSCs with increased stemness.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Tecido Adiposo , Idoso , Diferenciação Celular , Células Cultivadas , Humanos , Família Multigênica
19.
J Neuroinflammation ; 17(1): 147, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375831

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of its complex pathogenesis, there is no definite cure for MS. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Arsenic trioxide (ATO) is an ancient Chinese medicine used for its therapeutic properties with several autoimmune diseases. It is also used to inhibit acute immune rejection due to its anti-inflammatory and immunosuppressive properties. However, it is unclear whether ATO has a therapeutic effect on EAE, and the underlying mechanisms have not yet been clearly elucidated. In this study, we attempted to assess whether ATO could be used to ameliorate EAE in mice. METHODS: ATO (0.5 mg/kg/day) was administered intraperitoneally to EAE mice 10 days post-immunization for 8 days. On day 22 post-immunization, the spinal cord, spleen, and blood were collected to analyze demyelination, inflammation, microglia activation, and the proportion of CD4+ T cells. In vitro, for mechanistic studies, CD4+ T cells were sorted from the spleen of naïve C57BL/6 mice and treated with ATO and then used for an apoptosis assay, JC-1 staining, imaging under a transmission electron microscope, and western blotting. RESULTS: ATO delayed the onset of EAE and alleviated the severity of EAE in mice. Treatment with ATO also attenuated demyelination, alleviated inflammation, reduced microglia activation, and decreased the expression levels of IL-2, IFN-γ, IL-1ß, IL-6, and TNF-α in EAE mice. Moreover, the number and proportion of CD4+ T cells in the spinal cord, spleen, and peripheral blood were reduced in ATO-treated EAE mice. Finally, ATO induced CD4+ T cell apoptosis via the mitochondrial pathway both in vitro and in vivo. Additionally, the administration of ATO had no adverse effect on the heart, liver, or kidney function, nor did it induce apoptosis in the spinal cord. CONCLUSIONS: Overall, our findings indicated that ATO plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.


Assuntos
Trióxido de Arsênio/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Animais , Apoptose/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
20.
Cancer Manag Res ; 10: 3649-3656, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271213

RESUMO

INTRODUCTION: To assess the effect of tumor laterality to cardiac-related deaths of breast cancer in the current radiation practices using a large modern population-based study. METHODS: Women diagnosed with breast cancer from 2000 to 2008 were included using the current Surveillance, Epidemiology, and End Results database. The primary outcome of this study was the cardiac-related mortality. Multivariate analysis was performed using the Cox proportional hazards model to analyze the cardiac-related mortality including demographic, clinicopathologic, and treatment factors. RESULTS: We identified 168,761 breast cancer patients, including 85,006 (50.4%) patients with left-sided tumors and 83,755 (49.6%) patients with right-sided tumors. The median follow-up period was 8.8 years. The 10-year cardiac-related mortality was 2.3% and 2.3% in left- and right-sided tumors, respectively (P=0.685). The results indicated that patients with older age, non-Hispanic Black, receipt of mastectomy, and married status were the independent adverse factors for cardiac-related mortality. However, left-sided tumors were not associated to a higher risk of cardiac-related mortality than right-sided tumors following postoperative radiotherapy (right vs left, hazard ratios 1.025, 95% CI 0.856-1.099, P=0.484). The risk of cardiac-related mortality in the entire cohort was increased with the extension of follow-up time. However, there was still not significantly different between left- and right-sided tumors. Subgroup analysis also found no association between tumor laterality and cardiac-related mortality after postoperative radiotherapy based on various demographics and treatment factors. CONCLUSION: With a median follow-up of 8.8 years, no significant differences were found in cardiac-related mortality between left- and right-sided tumors under current radiation practices of breast cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA