Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39203778

RESUMO

Lard is highly appreciated for its flavor. However, it has not been elucidated how to consume lard while at the same time eliminating its adverse effects on postpartum cognitive function. Female mice were divided into three groups (n = 10): soybean oil (SO), lard oil (LO), and a mixture of soybean oil and lard at a ratio of 1:1 (LS). No significant difference was observed between the SO and LS groups in behavioral testing of the maternal mice, but the LO group was significantly worse compared with these two groups. Moreover, the SO and LS supplementation increased docosahexaenoic acid (DHA) and total n-3 polyunsaturated fatty acid (PUFA) levels in the brain and short-chain fatty acid (SCFA)-producing bacteria in feces, thereby mitigating neuroinflammation and lowering the p-ERK(1/2)/ERK(1/2), p-CREB/CREB, and BDNF levels in the brain compared to the LO group. Collectively, the LS group inhibited postpartum cognitive impairment by regulating the brain fatty acid composition, neuroinflammation, gut microbiota, and the SCFA/ERK(1/2)/CREB/BDNF signaling pathway compared to lard.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Encéfalo , Disfunção Cognitiva , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Ácidos Graxos Voláteis , Período Pós-Parto , Óleo de Soja , Animais , Feminino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Óleo de Soja/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
Curr Res Food Sci ; 9: 100797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005495

RESUMO

It has been suggested that dietary intake of lipids and fatty acids may influence cognitive function, however, the effect of lard intake during pregnancy and postpartum periods on cognitive function of mother remains to be elucidated. We investigated the effect and mechanism of consuming soybean oil (SO), the mixed oil of lard and soybean oil at the ratio of 1:1 (LS) and lard oil (LO) during the pregnancy and postpartum periods on cognitive function of the maternal mice. All pregnant C57BL/6JNifdc mice were fed with soybean oil diet during day 0-10 (the day when vaginal plugs appeared in female mice was recorded as day 0), and then randomly assigned to SO, LS and LO groups (n = 10) from day 11 to day 44. The time in center zone and the number of times to enter in center zone were significantly higher in the SO group than in the LO group detected by the open-field test. The levels of neuroglial cells, NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex and pyroptosis related proteins in brain of the LO group were significantly higher than those in the SO group. RNA-sequencing results showed that the calcium signaling pathway related genes in brain, including Adcy8, Ntsr1, Trhr, Oxtr, Htr5b and Camk2d levels significantly higher in the LO group than in the SO group. Lipidomic analysis indicated that PG 18:2_18:2, PG 20:5_22:6, and CL 12:0_16:0_22:3_22:5 of glycerophospholipid metabolism in brain significantly connected with Htr5b of calcium signaling pathway. In conclusion, the intake of lard during the pregnancy and postpartum periods is detrimental to the cognitive function of maternal mice, which probably due to changes in the composition of fatty acid in the brain, thereby activating neuroinflammation via calcium signaling pathway in brain.

3.
J Nutr Biochem ; 126: 109588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266689

RESUMO

Mitochondrial dysfunction is one of the triggers for obesity-induced neuron apoptosis. Thinned young apple is getting more attention on account of the extensive biological activities because of rich polyphenols and polysaccharides. However, the neuroprotective effect of thinned young apple powder (YAP) is still unclear. The aim of the present study was to investigate the preventive effect of YAP on obesity-induced neuronal apoptosis. C57BL/6J male mice were divided into 5 groups, control (CON), high fat diet (HFD), HFD + orlistat (ORL), HFD + low-dose young apple powder (LYAP) and HFD + high-dose young apple powder (HYAP) groups and intervened for 12 weeks. It was found that the YAP effectively reduced body weight gain. Importantly, the levels of pro-apoptosis protein were lower in LYAP and HYAP groups than the HFD group, such as Bak/Bcl2 and cleaved caspase3/caspase3. Pathway analysis based on untargeted metabolomics suggested that YAP alleviated obesity-induced neuronal apoptosis by three main metabolic pathway including arginine metabolism, citrate cycle (TCA cycle) and glutathione metabolism. Meanwhile, YAP improved the protein expression of mitochondrial respiratory chain complex, maintained the homeostasis of TCA cycle intermediates, protected the balance of mitochondrial dynamics and alleviated lipid accumulation. In addition, the levels of several antioxidants in cerebral cortex were higher in HYAP group than the HFD group like superoxide dismutase (SOD) and catalase (CAT). In summary, YAP supplementation suppressed neuronal apoptosis in the cerebral cortex of HFD-induced obesity mice by improving mitochondrial function and inhibiting oxidative stress.


Assuntos
Malus , Camundongos , Masculino , Animais , Pós/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Dieta Hiperlipídica/efeitos adversos , Apoptose , Córtex Cerebral/metabolismo
4.
Food Funct ; 14(21): 9506-9517, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37840364

RESUMO

Both epidemiological and preclinical studies have shown the benefits of n-3 polyunsaturated fatty acid (n-3 PUFA) on dementia and cognitive impairment, yet the results of clinical randomized controlled trials (RCTs) performed to date are conflicting. The difference in the baseline omega-3 index (O3i) of subjects is a potential cause for this disparity, yet this is usually ignored. The present meta-analysis aimed to evaluate the effect of n-3 polyunsaturated fatty acid (n-3 PUFA) on cognitive function in the elderly and the role of baseline O3i. A systematic literature search was conducted in PubMed, Embase, Cochrane Library, and Web of Science up to June 27th, 2023. The mean changes in the mini-mental state examination (MMSE) score were calculated as weighted mean differences by using a fixed-effects model. Fifteen random controlled trials were included in the meta-analysis. Pooled analysis showed that n-3 PUFA supplementation did not significantly improve the MMSE score (WMD = 0.04, [-0.08, 0.16]; Z = 0.62, P = 0.53; I2 = 0.00%, P(I2) = 0.49). Out of the 15 studies included in the meta-analysis, only 7 reported O3i at baseline and outcome, so only these 7 articles were used for subgroup analysis. Subgroup analysis showed that the MMSE score was significantly improved in the higher baseline O3i subgroup (WMD = 0.553, [0.01, 1.095]; I2 = 0.00%, P(I2) = 0.556) and higher O3i increment subgroup (WMD = 0.525, [0.023, 1.026]; I2 = 0.00%, P(I2) = 0.545). The overall effect demonstrated that n-3 PUFA supplementation exerted no improvement on global cognitive function. However, a higher baseline O3i and higher O3i increment were associated with an improvement in cognitive function in the elderly.


Assuntos
Disfunção Cognitiva , Ácidos Graxos Ômega-3 , Humanos , Idoso , Ácidos Graxos Ômega-3/farmacologia , Cognição , Disfunção Cognitiva/tratamento farmacológico , Suplementos Nutricionais
5.
Int J Biol Macromol ; 233: 123288, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657536

RESUMO

Dendrobium officinale polysaccharide (DP) has the potential function to prevent diabetes-induced neuronal apoptosis, whereas the mechanism is not completely clear. Ten eleven translocation dioxygenase 2 (TET2) is one of the most important therapeutic target for repairing neuronal damage in diabetic mice. The aim of the present study was to investigate whether DP could prevent neuronal apoptosis by regulating TET2 in the brain of HFD-induced diabetic mice. C57BL/6J mice were randomly divided into four groups (n = 12), control group (CON), high-fat diet group (HFD, negative control), metformin group (MET, positive control), and DP group (DP). Compared with HFD group, the neuronal apoptosis of brain was significantly lower in the DP group. The levels of TET2 protein, 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were significantly lower in the HFD group than in both the DP and CON groups in the cerebral cortex of mice. The ratio of p-AMPK/AMPK and α-KG/(fumaric acid + succinic acid) were significantly lower in the HFD group than in the other groups. The present study suggests that DP has a preventive effect on diabetes-induced neuronal apoptosis by regulating TET2 function through improving phosphorylate AMPK and mitochondrial function, thus remodeling DNA epigenetics profile of mice brain.


Assuntos
Dendrobium , Diabetes Mellitus Experimental , Dioxigenases , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Desmetilação do DNA , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Apoptose , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA