Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nat Med ; 77(1): 96-108, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136205

RESUMO

Neuroprotective antioxidants, especially peptide-based antioxidants, are effective against oxidative stress in neurodegenerative disorders. In this study, we measured the neuroprotective effects of the antioxidant peptide DFTPVCTTELGR (DR12) from housefly Musca domestica L. pupae. Treatment of PC12 and HT22 cells with DR12 significantly reduced glutamate-induced cytotoxicity. Peptide DR12 appeared to exert its neuroprotective effects by attenuating production of reactive oxygen species and malonaldehyde, upregulating the endogenous antioxidants superoxide dismutase and glutathione, and reversing the loss of mitochondrial membrane potential. In addition, DR12 treatment activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Structure-activity analysis indicated that the superior neuroprotective function of DR12 was related to its cysteine residue. In summary, DR12 may be an attractive therapeutic peptide or precursor to treat neurodegenerative diseases.


Assuntos
Moscas Domésticas , Fármacos Neuroprotetores , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Moscas Domésticas/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peptídeos/farmacologia , Relação Estrutura-Atividade , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo
2.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080202

RESUMO

Citri Reticulatae Pericarpium (CRP) is one of the most commonly used food supplements and folk medicines worldwide, and possesses cardiovascular, digestive, and respiratory protective effects partially through its antioxidant and anti-inflammatory functions. The unique aromatic flavor and mild side effects make CRP a promising candidate for the development of anti-inflammatory functional food. However, recent studies show that the crude alcoholic extract and some isolated compounds of CRP show compromised anti-inflammatory activity, which became the main factor hindering its further development. To identify the bioactive compounds with anti-inflammatory potential, and improve the anti-inflammatory effects of the extract, a bioinformatics-guided extraction protocol was employed in this study. The potential bioactive candidates were identified by combing network pharmacology analysis, molecular docking, principal components analysis, k-means clustering, and in vitro testing of reference compounds. Our results demonstrated that 66 compounds in CRP could be grouped into four clusters according to their docking score profile against 24 receptors, while the cluster containing flavonoids and phenols might possess a more promising anti-inflammatory function. In addition, in vitro anti-inflammatory tests of the seven reference compounds demonstrated that hesperitin, naringenin, and gardenin B, which were grouped into a cluster containing flavonoids and phenols, significantly decreased LPS-induced NO, TNF-α, and IL-6 production of macrophages. While the compounds outside of that cluster, such as neohesperidin, naringin, hesperidin, and sinensetin showed little effect on alleviating LPS-induced NO and proinflammatory cytokine production. Based on the chemical properties of selected compounds, ethyl acetate (EtOAc) was selected as the solvent for extraction, because of its promising solubility of flavonoids and phenols. Furthermore, the ethanol alcoholic extract was used as a reference. The chemical profiling of EtOAc and crude alcoholic extract by HPLC/MS/MS also demonstrated the decreased abundance of flavonoid glycosides in EtOAc extract but increased abundance of phenols, phenolic acid, and aglycones. In accordance with the prediction, the EtOAc extract of CRP, but not the crude alcoholic extract, significantly decreased the NO, IL-6, and TNF-α production. Taken together, the results suggested selective extraction of phenols and flavonoids rich extract was able to increase the anti-inflammatory potential of CRP partially because of the synergistic effects between flavonoids, phenols, and enriched polymethoxyflavones. Our study might pave the road for the development of ethyl acetate extract of CRP as a novel functional food with anti-inflammatory function.


Assuntos
Citrus , Ingredientes de Alimentos , Acetatos , Anti-Inflamatórios/farmacologia , Citrus/química , Biologia Computacional , Flavonoides/química , Flavonoides/farmacologia , Alimento Funcional , Interleucina-6 , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos , Fator de Necrose Tumoral alfa
3.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144782

RESUMO

A new sesquiterpenoid (1) was obtained by hydrogenating Chlojaponilactone B. The structure of 1 was elucidated according to a combination of NMR, HRESIMS, and NOE diffraction data. The treatment of H2O2 in a PC12 cell model was used to evaluate the antioxidant activity of 1. An MMT assay showed that 1 had no cytotoxicity to the PC12 cell and rescued cell viability from the oxidative damage caused by H2O2. The treatment of 1 stabilized the mitochondria membrane potential (MMP), which decreased the intracellular ROS level and reduced cell apoptosis in the oxidative stress model. The activities of antioxidant enzyme superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the content of intracellular glutathione (GSH) were significantly enhanced after the treatment of 1. In addition, the results of qRT-PCR showed that 1 treatment minimized the cell injury by H2O2 via the up-regulation of the expression of nuclear factor erythroid 2 (Nrf2) and its downstream enzymes Heme oxygenase 1 (HO-1), glutamate cysteine ligase-modifier subunit (GCLm), and NAD(P)H quinone dehydrogenase 1 (Nqo1). Based on the antioxidant activity of 1, we speculated its potential as a therapeutic agent for some diseases induced by oxidative damage.


Assuntos
Fármacos Neuroprotetores , Sesquiterpenos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/toxicidade , NAD/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Células PC12 , Quinonas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Superóxido Dismutase/metabolismo
4.
Front Microbiol ; 13: 864246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875567

RESUMO

Methicillin-resistant Staphylococcus epidermidis (MRSE) is one of the most commonly found pathogens that may cause uncontrollable infections in immunocompromised and hospitalized patients. Compounds isolated from cinnamon such as cinnamaldehyde and cinnamic acid showed promising anti-oxidant, anti-tumor, and immunoregulatory effects; more importantly, these compounds also possess promising broad-spectrum antibacterial activity. In this study, the potential antibacterial activity of 2-methoxycinnamaldehyde (MCA), another compound in cinnamon, against MRSE was investigated. Combining the broth microdilution test, live/dead assay, and biofilm formation assay, we found MCA was able to inhibit the proliferation, as well as the biofilm formation of MRSE, indicating MCA could not only affect the growth of MRSE but also inhibit the pathogenic potential of this bacterium. Additionally, the results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that MCA caused morphological changes and the leakage of DNA, RNA, and cellular contents of MRSE. Due to the close relationship between cell wall synthesis, ROS formation, and cell metabolism, the ROS level and metabolic profile of MRSE were explored. Our study showed MCA significantly increased the ROS production in MRSE, and the following metabolomics analysis showed that the increased ROS production may partially be due to the increased metabolic flux through the TCA cycle. In addition, we noticed the metabolic flux through the pentose phosphate pathway (PPP) was upregulated accompanied by elevated ROS production. Therefore, the alterations in cell metabolism and increased ROS production could lead to the damage of the cell wall, which in turn decreased the proliferation of MRSE. In conclusion, MCA seemed to be a promising alternative antimicrobial agent to control MRSE infections.

5.
Front Microbiol ; 13: 823845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308342

RESUMO

Cutibacterium acnes (C. acnes) is an anaerobic Gram-positive bacterium generally considered as a human skin commensal, but is also involved in different infections, such as acne and surgical infections. Although there are a variety of treatments, the side effects and the problem of bacterial drug resistance still limit their clinical usage. In this study, we found that essential oil (EO) distilled from fresh mature Litsea cubeba possessed promising antibacterial activity against C. acnes. In order to elucidate its potential mechanism, bacteriostatic activity test, Live/Dead kit assay, scanning electron microscope (SEM), transmission electron microscope (TEM), and metabolomics were employed. In addition, the content of adenosine triphosphate (ATP) in bacterium and the activities of key enzymes involved in critical metabolic pathways were detected using a variety of biochemical assays. The results showed that EO exhibited significant antibacterial activity against C. acnes at a minimum inhibitory concentration (MIC) of 400 µg/mL and a minimum bactericidal concentration (MBC) of 800 µg/mL, and EO could destroy C. acnes morphology and inhibit its growth. Moreover, results from our study showed that EO had a significant effect on the C. acnes normal metabolism. In total, 86 metabolites were altered, and 34 metabolic pathways related to the carbohydrate metabolism, energy metabolism, amino acid metabolism, as well as cell wall and cell membrane synthesis were perturbed after EO administration. The synthesis of ATP in bacterial cells was also severely inhibited, and the activities of key enzymes of the glycolysis and Wood-Werkman cycle were significantly affected (Pyruvate Carboxylase, Malate Dehydrogenase and Pyruvate kinase activities were decreased, and Hexokinase was increased). Taken together, these results illustrated that the bacteriostatic effect of EO against C. acnes by breaking the bacterial cell morphology and perturbing cell metabolism, including inhibition of key enzyme activity and ATP synthesis. The results from our study may shed new light on the discovery of novel drugs with more robust efficacy.

6.
Molecules ; 26(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063301

RESUMO

Amomum Villosum Lour. (A. villosum) is a folk medicine that has been used for more than 1300 years. However, study of the polysaccharides of A. villosum is seriously neglected. The objectives of this study are to explore the structural characteristics of polysaccharides from A. villosum (AVPs) and their effects on immune cells. In this study, the acidic polysaccharides (AVPG-1 and AVPG-2) were isolated from AVPs and purified via anion exchange and gel filtration chromatography. The structural characteristics of the polysaccharides were characterized by methylation, HPSEC-MALLS-RID, HPLC, FT-IR, SEM, GC-MS and NMR techniques. AVPG-1 with a molecular weight of 514 kDa had the backbone of → 4)-α-d-Glcp-(1 → 3,4)-ß-d-Glcp-(1 → 4)-α-d-Glcp-(1 →. AVPG-2 with a higher molecular weight (14800 kDa) comprised a backbone of → 4)-α-d-Glcp-(1 → 3,6)-ß-d-Galp-(1 → 4)-α-d-Glcp-(1 →. RAW 264.7 cells were used to investigate the potential effect of AVPG-1 and AVPG-2 on macrophages, and lipopolysaccharide (LPS) was used as a positive control. The results from bioassays showed that AVPG-2 exhibited stronger immunomodulatory activity than AVPG-1. AVPG-2 significantly induced nitric oxide (NO) production as well as the release of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), and upregulated phagocytic capacities of RAW 264.7 cells. Real-time PCR analysis revealed that AVPG-2 was able to turn the polarization of macrophages to the M1 direction. These results suggested that AVPs could be explored as potential immunomodulatory agents of the functional foods or complementary medicine.


Assuntos
Amomum/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Animais , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Etanol , Fatores Imunológicos , Imunomodulação/efeitos dos fármacos , Lipopolissacarídeos/química , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Microscopia Eletrônica de Varredura , Peso Molecular , Óxido Nítrico/química , Fagocitose , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
7.
Curr Top Med Chem ; 20(1): 57-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31797760

RESUMO

Pyrola (Pyrolaceae), also known as Luxiancao/in China, was recorded in Sheng Nong's Herbal Classic listed in top grade. Pyrola herbs were used as medicinal plants for a long history with wide-ranging activities such as nourishing kidney-yang, strengthening muscles and bones, activating blood, stopping bleeding, dispelling rheumatism, and eliminating dampness. Currently, the research on Pyrola plants is increasing year by year but there is no comprehensive and detailed review concerning genus Pyrola. This review aims to sum up the updated and comprehensive information about botany and traditional use, phytochemistry, pharmacological activities and safety by analyzing the information available on Pyrola plants via internationally accepted scientific databases. Collectively, more than 100 compounds have been isolated from the Pyrola plants. Furthermore, a total of 33 prescriptions containing Pyrola plants are compiled in this review. Pyrola plants are used as indispensable agents in traditional Chinese medicine due to its activities of antimicrobial, anti-inflammatory, antioxidant, lipidlowering, cardiovascular and cerebrovascular protection, proliferation of osteoblasts promoting, antineoplastic and etc. Further work should be developed on the elucidation of structure-function relationship, understanding of multi-target pharmacological effects, as well as developing its application both in clinical usage and functional food for research and development of Pyrola plants.


Assuntos
Plantas Medicinais/química , Pyrola/química , Animais , Humanos , Medicina Tradicional Chinesa , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA