Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(4): 260, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609357

RESUMO

Breast cancer has the highest global incidence and mortality rates among all cancer types. Abnormal expression of the Annexin family has been observed in different malignant tumors, including upregulated ANXA9 in breast cancer. We found highly expressed ANXA9 in metastatic breast cancer tissues, which is correlated with breast cancer progression. In vitro, the functional experiments indicated ANXA9 influenced breast cancer proliferation, motility, invasion, and apoptosis; in vivo, downregulation of ANXA9 suppressed breast cancer xenograft tumor growth and lung metastasis. Mechanically, on one side, we found that ANXA9 could mediate S100A4 and therefore regulate AKT/mTOR/STAT3 pathway to participate p53/Bcl-2 apoptosis; on the other side, we found ANXA9 transferred S100A4 from cells into the tumor microenvironment and mediated the excretion of cytokines IL-6, IL-8, CCL2, and CCL5 to participate angiogenesis via self- phosphorylation at site Ser2 and site Thr69. Our findings demonstrate significant involvement of ANXA9 in promoting breast cancer progression, thereby suggesting that therapeutic intervention via targeting ANXA9 may be effective in treating metastatic breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Neoplasias da Mama/genética , Mama , Fosforilação , Regulação para Baixo , Microambiente Tumoral , Proteína A4 de Ligação a Cálcio da Família S100 , Anexinas , Fator de Transcrição STAT3
2.
J Adv Res ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615740

RESUMO

INTRODUCTION: Urolithin A (UA) is a naturally occurring compound that is converted from ellagitannin-like precursors in pomegranates and nuts by intestinal flora. Previous studies have found that UA exerts tumor-suppressive effects through antitumor cell proliferation and promotion of memory T-cell expansion, but its role in tumor-associated macrophages remains unknown. OBJECTIVES: Our study aims to reveal how UA affects tumor macrophages and tumor cells to inhibit breast cancer progression. METHODS: Observe the effect of UA treatment on breast cancer progression though in vivo and in vitro experiments. Western blot and PCR assays were performed to discover that UA affects tumor macrophage autophagy and inflammation. Co-ip and Molecular docking were used to explore specific molecular mechanisms. RESULTS: We observed that UA treatment could simultaneously inhibit harmful inflammatory factors, especially for InterleuKin-6 (IL-6) and tumor necrosis factor α (TNF-α), in both breast cancer cells and tumor-associated macrophages, thereby improving the tumor microenvironment and delaying tumor progression. Mechanistically, UA induced the key regulator of autophagy, transcription factor EB (TFEB), into the nucleus in a partially mTOR-dependent manner and inhibited the ubiquitination degradation of TFEB, which facilitated the clearance of damaged mitochondria via the mitophagy-lysosomal pathway in macrophages under tumor supernatant stress, and reduced the deleterious inflammatory factors induced by the release of nucleic acid from damaged mitochondria. Molecular docking and experimental studies suggest that UA block the recognition of TFEB by 1433 and induce TFEB nuclear localization. Notably, UA treatment demonstrated inhibitory effects on tumor progression in multiple breast cancer models. CONCLUSION: Our study elucidated the anti-breast cancer effect of UA from the perspective of tumor-associated macrophages. Specifically, TFEB is a crucial downstream target in macrophages.

3.
Environ Toxicol ; 39(5): 3026-3039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317508

RESUMO

Long noncoding RNAs have been reported to be involved in the development of breast cancer. LINC01572 was previously reported to promote the development of various tumors. However, the potential biological function of LINC01572 in breast cancer remains largely unknown. R language was used to perform bioinformatic analysis of The Cancer Genome Atlas data. The expression level of RNAs was examined by RT-qPCR. The effect of knocking down or overexpression LINC01572 in triple-negative breast cancer (TNBC) cell lines was evaluated by detecting cell proliferation, migrant action. RNA immunoprecipitation assay and RNA pull-down assay were performed to explore the regulatory relationship between LINC01572, EIF4A3, and ß-catenin. Bioinformatics analysis identifies LINC01572 as an oncogene of breast cancer. LINC01572 is over-expressed in TNBC tissues and cell lines, correlated with poor clinical prognosis in BC patients. Cell function studies confirmed that LINC01572 facilitated the proliferation and migration of TNBC cells in both vivo and vitro. Mechanistically, ß-catenin mRNA and EIF4A3 combine spatially to form a complex, LINC01572 helps transport this complex from the nucleus to the cytoplasm, thereby facilitating the translation of ß-catenin. Our findings confirm that LINC01572 acts as a tumor promoter and may act as a biomarker in TNBC. In addition, novel molecular regulatory relationships involving LINC01572/EIF4A3/ß-catenin are critical to the development of TNBC, which led to a new understanding of the mechanisms of TNBC progression and shows a new target for precision treatment for TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias de Mama Triplo Negativas/genética , RNA Mensageiro/genética , Linhagem Celular Tumoral , RNA , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
5.
J Healthc Eng ; 2022: 8507773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222894

RESUMO

A common and most basic brain tumor is glioma that is exceptionally dangerous to health of various patients. A glioma segmentation, which is primarily magnetic resonance imaging (MRI) oriented, is considered as one of common tools developed for doctors. These doctors use this system to examine, analyse, and diagnose appearance of the glioma's outward for both patients, i.e., indoor and outdoor. In the literature, a widely utilized approach for the segmentation of glioma is the deep learning-oriented method. To cope with this issue, a segmentation of glioma approach, i.e., primarily on the convolution neural networks, is developed in this manuscript. A DM-DA-enabled cascading approach for the segmentation of glioma, which is 2DResUnet-enabled model, is reported to resolve the problem of spatial data acquisition of insufficient 3D specifically in the 2D full CNN along with the core issue of memory consumption of 3D full CNN. For gliomas segmentation at various stages, we have utilized multiscale fusion approach, attention, segmentation, and DenseBlock. Moreover, for reducing three dimensionalities of the Unet model, a sampling of fixed region is used along with multisequence data of the glioma image. Finally, the CNN model has the ability of producing a better segmentation of tumor preferably with minimum possible memory. The proposed model has used BraTS18 and BraTS17 benchmark data sets for fivefold cross-validation (local) and online evaluation preferably official, respectively. Evaluation results have verified that edema's Dice Score preferable average, enhancement, and core areas of the segmentation of the glioma with DM-DA-Unet perform exceptionally well on the validation set of BraTS17. Finally, average sensitivity was observed to be high as well, which is approximately closer to the best segmentation model and its effect on the validation set of BraTS1 and has segmented gliomas accurately.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Tecnologia
6.
Neoplasma ; 68(1): 119-125, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32880469

RESUMO

Our previous studies have illustrated that CacyBP/SIP (Calcyclin-binding protein or Siah-1-interacting protein) promoted the proliferation of glioma cells. However, the possible mechanism still needs to be clarified. In the current study, we aimed to uncover the potential mechanism of CacyBP/SIP in regulating glioma cell proliferation. We found that CacyBP/SIP decreased the protein level of p53, but not the mRNA level of p53 in p53 mutant U251 cell line, whereas, in p53 wild-type U87 cell line, CacyBP/SIP neither promoted its proliferation nor regulated the changes of p53 protein. Further investigation indicated that CacyBP/SIP interacted with p53 and Mdm2 (Mouse double minute 2) to promote p53 ubiquitination and subsequent proteasome-mediated degradation in U251. Moreover, in the presence of Mdm2, CacyBP/SIP boosted the ubiquitination of p53 in a dose-dependent manner. On the contrary, inhibition of Mdm2 activity significantly increased the stability of p53. Finally, we found that the protein level of CacyBP/SIP and p53 is inversely correlated in p53 mutant human glioma tissues. These observations suggest an underlying mechanism that CacyBP/SIP promotes the degradation of p53 by enhancing Mdm2 E3 ligase activity, which reveals a novel pathway for the regulation of mutant p53 and provides a new therapeutic approach to target the CacyBP/SIP-induced glioma cell proliferation.


Assuntos
Proteínas de Ligação ao Cálcio , Glioma , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
J Neurooncol ; 131(1): 31-39, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27640199

RESUMO

Jab1 (Jun activation domain-binding protein 1), also known as CSN5 (COP9 signalosome subunit 5), is frequently overexpressed in several cancer types. However, the biological functions and the molecular mechanisms of the Jab1 protein in human gliomas have not been investigated. In this study, we found that Jab1 protein was increasingly expressed in human glioma tissues comparing with normal brain tissues (Non-tumor). This suggested that Jab1 might be involved in the development of glioma. Thus, the role of Jab1 in glioma cell proliferation was investigated using Jab1 loss- and gain-of-function. The results showed that downregulation of Jab1 significantly inhibited glioma cell proliferation, while overexpression of Jab1 promoted it. Further investigation on molecular targets revealed that silencing of Jab1 obviously increased the p53 protein level thereby promoting the transcription of ubiquitin ligase Siah1 (Seven in absentia homolog 1), which aggravates the degradation of ß-catenin. In contrast, overexpression of Jab1 had the opposite effect. Taken together, these findings suggest that Jab1 promotes glioma cell proliferation and increased expression of Jab1 in glioma patients may amplify ß-catenin signaling to contribute to glioma cell proliferation.


Assuntos
Neoplasias Encefálicas/patologia , Complexo do Signalossomo COP9/metabolismo , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , beta Catenina/metabolismo , Análise de Variância , Complexo do Signalossomo COP9/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas Nucleares/genética , Peptídeo Hidrolases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção , Ubiquitina-Proteína Ligases/genética , Ureia/análogos & derivados , Ureia/farmacologia , beta Catenina/genética
8.
Mol Neurobiol ; 54(7): 5008-5016, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27534417

RESUMO

Human glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates. As is well known, both tumor suppressor p53 and oncogenic protein c-JUN could be ubiquitinated and degraded by ubiquitin ligase COP1, which may be the reason that COP1 serves as an oncogene or a tumor suppressor in different cancer types. Up to now, the possible role of COP1 in human glioma is still unclear. In the present study, we found that the expression of COP1 was upregulated in human glioma tissues. The role of COP1 in glioma cell proliferation was investigated using COP1 loss- and gain-of-function. The results showed that downregulation of COP1 by short hairpin RNA (shRNA) inhibited glioma cell proliferation, while overexpression of COP1 significantly promoted it. Furthermore, we demonstrated that COP1 only interacted with and regulated p53, but not c-JUN. Taken together, these results indicate that COP1 may play a role in promoting glioma cell proliferation by interacting with and downregulating tumor suppressor p53 rather than oncogenic protein c-JUN.


Assuntos
Proliferação de Células , Glioma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proliferação de Células/fisiologia , Regulação para Baixo , Glioma/patologia , Humanos , RNA Interferente Pequeno/genética , Ativação Transcricional
9.
IUBMB Life ; 68(3): 211-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26825673

RESUMO

Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) was previously reported to promote the proliferation of glioma cells. However, the effect of CacyBP/SIP on apoptosis of glioma is poorly understood. Here, our study shows that CacyBP/SIP plays a role in inhibiting doxorubicin (DOX) induced apoptosis of glioma cells U251 and U87. Overexpression of CacyBP/SIP obviously suppressed the DOX-induced cell apoptosis. On the contrary, silencing of CacyBP/SIP significantly promoted it. Further investigation indicated that inhibition of apoptosis by CacyBP/SIP was relevant to its nuclear translocation in response to the DOX treatment. Importantly, we found that the level of p-ERK1/2 in nuclei was related to the nuclear accumulation of CacyBP/SIP. Finally, the role of CacyBP/SIP was confirmed in vivo in a mouse model with the cell line stably silencing CacyBP/SIP. Taken together, our results suggest that CacyBP/SIP plays an important role in inhibiting apoptosis of glioma cells which might be mediated by ERK1/2 signaling pathway, which will provide some guidance for the treatment of glioma.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/fisiologia , Doxorrubicina/farmacologia , Glioma/metabolismo , Sistema de Sinalização das MAP Quinases , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fosforilação , Processamento de Proteína Pós-Traducional , Carga Tumoral , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA