Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 155: 111070, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400448

RESUMO

Nine steaming nine sun-drying is a traditional processing technology for food or medicinal materials. The dynamic changes of the proximate composition, protein structure and volatile compounds during nine-time steaming and sun-drying of black soybeans (BS) were studied. The proximate composition results showed that the content of protein, carbohydrate and fat of BS decreased after processing, whereas the relative content of amino acids remained basically unchanged. Protein structure was evaluated using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet absorption spectroscopy (UV) and Fluorescence spectroscopy. FT-IR result revealed that the relative contents of ß-sheet and ß-turn of the secondary structure of black soybean protein isolate (BSPI) decreased but the relative contents of α-helix and random coil increased after steaming and sun-drying. The results of UV and fluorescence spectroscopy confirmed changes in the protein conformation. In addition, SPME-GCMS analysis demonstrated that hydrocarbons, alcohols and aldehydes were the main volatile compounds. The relative contents of 1-octen-3-ol and hexanal, which are the main sources of beany flavor decreased significantly compared with raw BS. Principal component analysis (PCA) results showed that the volatile compounds of nine steamed and nine sun-dried BS could be well distinguished during the process. These findings may therefore provide a scientific basis for the application of nine-time steamed and sun-dried BS in food industry and contribute to the understanding of process-induced chemical transformations in this ancient processing technique.


Assuntos
Dessecação , Glycine max , Aminoácidos/análise , Dessecação/métodos , Glycine max/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor/análise
2.
J Food Sci ; 87(3): 1009-1019, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35122243

RESUMO

Biofortification using inorganic selenium has become an effective strategy to enhance selenium content in crops. In the present study, the effects of selenium biofortification on the chemical composition and antioxidant capacity of black soybean (BS) during germination were studied. The contents of selenium, total sugar, vitamin C, γ-aminobutyric acid, total polyphenols, and total flavonoids in selenium biofortified germinated black soybeans (GBS-Se) significantly increased compared to germinated black soybeans (GBS). However, the contents of soluble protein, fat, and reducing sugar were decreased, while fatty acid composition was not significantly different between GBS and BS. HPLC analysis showed that 12 phenolic acids of all samples, which mainly existed in free forms. Their contents increased at low concentration of selenium and decreased along with the rise of selenium concentrations. The antioxidant activity of GBS-Se as analyzed by Pearson correlation analysis positively correlated with the accumulation of phenolic substances. Principal component analysis (PCA) showed that GBS and GBS-Se were significantly different from BS. Moreover, the physicochemical indexes of GBS showed regularly changes with increasing selenium content, and those of GBS-Se50 and GBS-Se75 were significantly different from GBS. The results provide a systematic evaluation on the effect of selenium fortification on the germination of seeds and useful information for the development of Se-enriched functional foods. PRACTICAL APPLICATION: The organic selenium black soybean (BS) produced by the germination method can be directly processed and eaten to improve human health. In addition, complexes of organic selenium, vitamin C, and γ-aminobutyric acid of germinated BS can be developed into functional substances and applied to food or health products as functional ingredient and/or natural antioxidant supplements.


Assuntos
Fabaceae , Selênio , Antioxidantes/química , Biofortificação/métodos , Fabaceae/química , Humanos , Sementes/química , Selênio/análise , Glycine max/química
3.
Food Chem ; 344: 128577, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33223293

RESUMO

Black sesame seeds (BSS) were processed by nine cycles of steaming and sun-drying, and the chemistry of their resulting products studied. That is, the shell color and structure, proximate composition, oil properties and volatile compounds of raw BSS were determined and compared with processed BSS. Various levels of shell color change and structure damage were observed. The proximate composition also differed, whereas the relative proportion of fatty acids and oil properties were unchanged. SPME-GCMS analysis revealed that aldehydes, hydrocarbons and alcohols were the main volatile compounds. And compared with raw BSS, four volatile substances were newly detected in the processed BSS. Principal component analysis (PCA) displayed the overall difference between samples and showed that repeated steaming and sun-drying process had a significant impact on the chemical composition of BSS.


Assuntos
Dessecação/métodos , Óleo de Gergelim/análise , Sesamum/química , Compostos Orgânicos Voláteis/análise , Clorofila/análise , Clorofila/isolamento & purificação , Cor , Ácidos Graxos/análise , Ácidos Graxos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Análise de Componente Principal , Sementes/química , Sementes/metabolismo , Óleo de Gergelim/química , Sesamum/metabolismo , Extração em Fase Sólida , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA