Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 20(7): 739-776, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198402

RESUMO

Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.


Assuntos
COVID-19 , Medicina de Precisão , Humanos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , COVID-19/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Epigênese Genética
2.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270867

RESUMO

Due to the problem of insufficient dynamic human ear data, the Changchun University dynamic human ear (CCU-DE) database, which is a small sample human ear database, was developed in this study. The database fully considers the various complex situations and posture changes of human ear images, such as translation angle, rotation angle, illumination change, occlusion and interference, etc., making the research of dynamic human ear recognition closer to complex real-life situations, and increasing the applicability of human ear dynamic recognition. In order to test the practicability and effectiveness of the developed CCU-DE small sample database, we designed a dynamic human ear recognition system block diagram based on a deep learning model, which was pre-trained by a migration learning method. Aiming at multi-posture changes under different contrasts, translation and rotation motions, and with or without occlusion, simulation studies were conducted using the CCU-DE small sample database and different deep learning models, such as YOLOv3, YOLOv4, YOLOv5, Faster R-CNN, and SSD. The experimental results showed that the CCU-DE database can be well used for dynamic ear recognition, and it can be tested by using different deep learning models with higher test accuracy.


Assuntos
Aprendizado Profundo , Bases de Dados Factuais , Orelha , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA