Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
World J Diabetes ; 15(5): 867-875, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38766431

RESUMO

Diabetes mellitus is a prevalent disorder with multi-system manifestations, causing a significant burden in terms of disability and deaths globally. Angio-tensin receptor-neprilysin inhibitor (ARNI) belongs to a class of medications for treating heart failure, with the benefits of reducing hospitalization rates and mortality. This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications, discussing possible physiological and molecular mechanisms, with insights for future applications.

2.
Diabetes Metab J ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408883

RESUMO

Background: Diabetes-induced cardiac fibrosis is one of the main mechanisms of diabetic cardiomyopathy. As a common histone methyltransferase, enhancer of zeste homolog 2 (EZH2) has been implicated in fibrosis progression in multiple organs. However, the mechanism of EZH2 in diabetic myocardial fibrosis has not been clarified. Methods: In the current study, rat and mouse diabetic model were established, the left ventricular function of rat and mouse were evaluated by echocardiography and the fibrosis of rat ventricle was evaluated by Masson staining. Primary rat ventricular fibroblasts were cultured and stimulated with high glucose (HG) in vitro. The expression of histone H3 lysine 27 (H3K27) trimethylation, EZH2, and myocardial fibrosis proteins were assayed. Results: In STZ-induced diabetic ventricular tissues and HG-induced primary ventricular fibroblasts in vitro, H3K27 trimethylation was increased and the phosphorylation of EZH2 was reduced. Inhibition of EZH2 with GSK126 suppressed the activation, differentiation, and migration of cardiac fibroblasts as well as the overexpression of the fibrotic proteins induced by HG. Mechanical study demonstrated that HG reduced phosphorylation of EZH2 on Thr311 by inactivating AMP-activated protein kinase (AMPK), which transcriptionally inhibited peroxisome proliferator-activated receptor γ (PPAR-γ) expression to promote the fibroblasts activation and differentiation. Conclusion: Our data revealed an AMPK/EZH2/PPAR-γ signal pathway is involved in HG-induced cardiac fibrosis.

3.
Mol Biol Rep ; 51(1): 329, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393658

RESUMO

Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.


Assuntos
Conexina 43 , Infarto do Miocárdio , Humanos , Arritmias Cardíacas/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional
4.
Diabetes Metab Syndr Obes ; 17: 247-257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38269338

RESUMO

Purpose: The aim of this study was to investigate the effects and mechanisms of SGLT2 inhibitor empagliflozin on diabetic coronary function. Methods: A rat diabetic model was established by injection of streptozotocin. Rats in the treated group were administered empagliflozin by gavage and rat coronary vascular tensions were measured after eight weeks. Large conductance calcium activated K+ channel currents were recorded using a patch clamp technique, while human coronary artery smooth muscle cells were used to explore the underlying mechanisms. Results: After incubation with empagliflozin (10, 30, 100, 300, 1000 µmol/L), the Δ relaxation % of rat coronary arteries were 2.459 ± 1.304, 3.251 ± 1.119, 6.946 ± 3.407, 28.36 ± 11.47, 86.90 ± 3.868, respectively. Without and with empagliflozin in the bath solution, BK channel opening probabilities at a membrane potential of +60 mV were 0.0458 ± 0.0517 and 0.3413 ± 0.2047, respectively (p < 0.05, n = 4 cells). After incubation with iberiotoxin, the Δ tensions of rat coronary arteries in the control (Ctrl), untreated (DM), low empagliflozin (10 mg/kg/d)-treated (DM+L-EMPA) and high empagliflozin (30mg/kg/d)-treated (DM+H-EMPA) group were 103.20 ± 5.85, 40.37 ± 22.12, 99.47 ± 28.51, 78.06 ± 40.98, respectively (p < 0.01 vs Ctrl, n = 3-7; p < 0.001 vs DM+L-EMPA, n = 5-7). Empagliflozin restored high glucose-induced downregulation of Sirt1, Nrf2, and BK-ß1, while the effect of empagliflozin disappeared in the presence of EX-527, a Sirt1 selective inhibitor. Conclusion: Empagliflozin has a vasodilation effect on the coronary arteries in a concentration-dependent manner and can activate BK channels via the Sirt1-Nrf2 mechanism.

6.
Eur J Pharmacol ; 961: 176167, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939994

RESUMO

BACKGROUND: Recent evidence revealed that glucose fluctuation might be more likely to cause arrhythmia than persistent hyperglycemia, whereas its mechanisms were elusive. We aimed to investigate the effect of glucose fluctuation on the occurrence of ventricular arrhythmia and its mechanism. METHODS: Streptozotocin (STZ) induced diabetic rats were randomized to five groups: the controlled blood glucose (C-STZ) group, uncontrolled blood glucose (U-STZ) group, fluctuated blood glucose (GF-STZ) group, and GF-STZ rats with 100 mg/kg Tempol (GF-STZ + Tempol) group or with 5 mg/kg KN93 (GF-STZ + KN93) group. Six weeks later, the susceptibility of ventricular arrhythmias and the electrophysiological dysfunctions of ventricular myocytes were evaluated using electrocardiogram and patch-clamp technique, respectively. The levels of reactive oxygen species (ROS) and oxidized CaMKII (ox-CaMKII) were determined by fluorescence assay and Western blot, respectively. Neonatal rat cardiomyocytes and H9C2 cells in vitro were used to explore the underlying mechanisms. RESULTS: The induction rate of ventricular arrhythmias was 10%, 55%, and 90% in C-STZ group, U-STZ group, and GF-STZ group, respectively (P < 0.05). The electrophysiological dysfunctions of ventricular myocytes, including action potential duration at repolarization of 90% (APD90), APD90 short-term variability (APD90-STV), late sodium current (INa-L), early after depolarization (EAD) and delayed after depolarizations (DAD), as well as the levels of ROS and ox-CaMKII, were significantly increased in GF-STZ group. In vivo and ex vivo, inhibition of ROS or ox-CaMKII reversed these effects. Inhibition of INa-L also significantly alleviated the electrophysiological dysfunctions. In vitro, inhibition of ROS increase could significantly decrease the ox-CaMKII activation induced by glucose fluctuations. CONCLUSIONS: Glucose fluctuations aggravated the INa-L induced ventricular arrhythmias though the activation of ROS/CaMKII pathway.


Assuntos
Diabetes Mellitus Experimental , Glucose , Animais , Ratos , Potenciais de Ação , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Glicemia/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Miócitos Cardíacos , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo
7.
Diabetol Metab Syndr ; 15(1): 217, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891701

RESUMO

BACKGROUND: Glucose fluctuations (GF) are a risk factor for cardiovascular complications associated with type 2 diabetes. However, there is a lack of adequate research on the effect of GF on myocardial fibrosis and the underlying mechanisms in type 2 diabetes. This study aimed to investigate the impact of glucose fluctuations on myocardial fibrosis and explore the potential mechanisms in type 2 diabetes. METHODS: Sprague Dawley (SD) rats were randomly divided into three groups: the control (Con) group, the type 2 diabetic (DM) group and the glucose fluctuations (GF) group. The type 2 diabetic rat model was established using a high-fat diet combined with low-dose streptozotocin injection and the GF model was induced by using staggered glucose and insulin injections daily. After eight weeks, echocardiography was used to assess the cardiac function of the three groups. Hematoxylin-eosin and Masson staining were utilized to evaluate the degree of pathological damage and fibrosis. Meanwhile, a neonatal rat cardiac fibroblast model with GF was established. Western and immunofluorescence were used to find the specific mechanism of myocardial fibrosis caused by GF. RESULTS: Compared with rats in the Con and the DM group, cardiac function in the GF group showed significant impairments. Additionally, the results showed that GF aggravated myocardial fibrosis in vitro and in vivo. Moreover, Ca2+/calmodulin­dependent protein kinase II (CaMKII) was activated by phosphorylation, prompting an increase in phosphorylation of signal transducer and activator of transcription 3 (Stat3) and induced nuclear translocation. Pretreatment with KN-93 (a CaMKII inhibitor) blocked GF-induced Stat3 activation and significantly suppressed myocardial fibrosis. CONCLUSIONS: Glucose fluctuations exacerbate myocardial fibrosis by triggering the CaMKII/Stat3 pathway in type 2 diabetes.

8.
Diabetes Metab Syndr Obes ; 16: 3045-3056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810573

RESUMO

Purpose: Diabetes mellitus is an independent risk factor for atrial fibrillation (AF), which may be related to accumulation of advanced glycation end products (AGEs). However, the mechanisms involved are not completely clear. Abnormality of gap junction proteins, especially connexin 43 (Cx43) and connexin 40 (Cx40) in atrial myocytes, is an important cause of increased susceptibility of AF. The aim of our work is to investigate the mechanism of dysregulated Cx43 and Cx40 in atrial myocytes of diabetic rats. Methods: We established a type 1 diabetic rat model by intraperitoneal injection of streptozotocin. HL-1 cells and primary rat atrial myocytes were treated with AGEs in vitro. Using Western blotting, immunofluorescence staining, immunohistochemistry, and lucifer yellow diffusion measurements, we investigated dysregulation of Cx43 and Cx40 and its mechanism in atrial myocytes of diabetic rats. Results: Accumulation of AGEs was found in diabetic rats. The expression of Cx43 and Cx40 was reduced in the atrium of diabetic rats, accompanied by the decrease of phosphorylated Adenosine 5'-monophosphate-activated protein kinase (p-AMPK). Similar results were found in cultured HL-1 cells and primary rat atrial myocytes, suggesting a role of AGEs on gap junction proteins. An AMPK agonist, 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), reversed the down-regulated Cx43 expression induced by AGEs stimulation. More importantly, lucifer yellow diffusion assay showed that AGEs significantly affected gap junctional function, and these changes were reversed by AICAR. Conclusion: Thus, we conclude that AGEs cause dysregulation of Cx43 and Cx40 in diabetic atria via the AMPK pathway, thereby leading to gap junction dysfunction, which may contribute to the increased AF susceptibility in diabetes.

9.
BMC Cardiovasc Disord ; 23(1): 474, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735624

RESUMO

BACKGROUND: Diabetes is associated with myocardial fibrosis, while the underlying mechanisms remain elusive. The aim of this study is to investigate the underlying role of calcineurin/nuclear factor of activated T cell 3 (CaN/NFATc3) pathway and the Enhancer of zeste homolog 2 (EZH2) in diabetes-related myocardial fibrosis. METHODS: Streptozotocin (STZ)-injected diabetic rats were randomized to two groups: the controlled glucose (Con) group and the diabetes mellitus (DM) group. Eight weeks later, transthoracic echocardiography was used for cardiac function evaluation, and myocardial fibrosis was visualized by Masson trichrome staining. The primary neonatal rat cardiac fibroblasts were cultured with high-glucose medium with or without cyclosporine A or GSK126. The expression of proteins involved in the pathway was examined by western blotting. The nuclear translocation of target proteins was assessed by immunofluorescence. RESULTS: The results indicated that high glucose treatment increased the expression of CaN, NFATc3, EZH2 and trimethylates lysine 27 on histone 3 (H3K27me3) in vitro and in vivo. The inhibition of the CaN/NFATc3 pathway alleviated myocardial fibrosis. Notably, inhibition of CaN can inhibit the nuclear translocation of NFATc3, and the expression of EZH2 and H3K27me3 protein induced by high glucose. Moreover, treatment with GSK126 also ameliorated myocardial fibrosis. CONCLUSION: Diabetes can possibly promote myocardial fibrosis by activating of CaN/NFATc3/EZH2 pathway.


Assuntos
Calcineurina , Diabetes Mellitus Experimental , Animais , Ratos , Diabetes Mellitus Experimental/complicações , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fibroblastos , Glucose , Histonas , Fatores de Transcrição NFATC
10.
Diab Vasc Dis Res ; 20(4): 14791641231197107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37592725

RESUMO

Background: Advanced glycation end products (AGEs) impair vascular physiology in Diabetes mellitus (DM). However, the underlying mechanisms remain unclear. Vascular large conductance calcium-activated potassium (BK) channels play important roles in coronary arterial function.Purpose: Our study aimed to investigate the regulatory role of AGEs in BK channels.Research Design: Using gavage of vehicle (V, normal saline) or aminoguanidine (A) for 8 weeks, normal and diabetic rats were divided into four groups: C+V group, DM+V group, C+A group, and DM+A group.Study Sample: Coronary arteries from different groups of rats and human coronary smooth muscle cells were used in this study.Data Collection and Analysis: Data were presented as mean ± SEM (standard error of mean). Student's t-test was used to compare data between two groups. One-way ANOVA with post-hoc LSD analysis was used to compare data between multiple groups.Results: Compared to the C+V group, vascular contraction induced by iberiotoxin (IBTX), a BK channel inhibitor, was impaired, and BK channel densities decreased in the DM+V group. However, aminoguanidine administration reduced the impairment. Protein expression of BK-ß1, phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and protein kinase B (PKB or Akt) were down-regulated, while F-box protein 32 (FBXO32) expression increased in the DM+V group and in high glucose (HG) cultured human coronary smooth muscle cells. Treatment with aminoguanidine in vitro and in vivo could reverse the above protein expression. The effect of aminoguanidine on the improvement of BK channel function by inhibiting the generation of AGEs was reversed by adding MK2206 (Akt inhibitor) or Compound C (AMPK inhibitor) in HG conditions in vitro.Conclusions: AGEs aggravate BK channel dysfunction via the AMPK/Akt/FBXO32 signaling pathway.


Assuntos
Vasos Coronários , Diabetes Mellitus Experimental , Ratos , Humanos , Animais , Vasos Coronários/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Transdução de Sinais , Produtos Finais de Glicação Avançada/metabolismo , Miócitos de Músculo Liso , Proteínas Musculares/metabolismo , Proteínas Musculares/farmacologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/farmacologia
11.
Front Cardiovasc Med ; 10: 1194771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293288

RESUMO

Background: Accumulated clinical studies utilized intracardiac echocardiography (ICE) to guide percutaneous left atrial appendage occlusion (LAAO). However, its procedural success and safety compared to traditional transesophageal echocardiography (TEE) remained elusive. Therefore, we performed a meta-analysis to compare efficacy and safety of ICE and TEE for LAAO. Methods: We screened studies from four online databases (including the Cochrane Library, Embase, PubMed, and Web of Science) from their inception to 1 December 2022. We used a random or fixed-effect model to synthesize the clinical outcomes and conducted a subgroup analysis to identify the potential confounding factors. Results: A total of twenty eligible studies with 3,610 atrial fibrillation (AF) patients (1,564 patients for ICE and 2,046 patients for TEE) were enrolled. Compared with TEE group, there was no significant difference in procedural success rate [risk ratio (RR) = 1.01; P = 0.171], total procedural time [weighted mean difference (WMD) = -5.58; P = 0.292], contrast volume (WMD = -2.61; P = 0.595), fluoroscopic time (WMD = -0.34; P = 0.705; I2 = 82.80%), procedural complications (RR = 0.82; P = 0.261), and long-term adverse events (RR = 0.86; P = 0.329) in the ICE group. Subgroup analysis revealed that ICE group might be associated with the reduction of contrast use and fluoroscopic time in the hypertension proportion <90 subgroup, with lower total procedure time, contrast volume, and the fluoroscopic time in device type subgroup with multi-seal mechanism, and with the lower contrast use in paroxysmal AF (PAF) proportion ≤50 subgroup. Whereas, ICE group might increase the total procedure time in PAF proportion >50 subgroup and contrast use in multi-center subgroup, respectively. Conclusion: Our study suggests that ICE may have comparable efficacy and safety compared to TEE for LAAO.

12.
Sci Rep ; 13(1): 1820, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725968

RESUMO

Dilated cardiomyopathy (DCM) is characterized by the left ventricular dilatation and impaired myocardial systolic dysfunction with high mortality and morbidity. However, the underlying mechanisms remain elusive. We first identified the differentially expressed genes (DEGs) between the DCM and control group using two expression profiles from GSE3585 and GSE84796. Enrichment analysis was conducted to explore the potential mechanisms underlying DCM. A total of four algorithms, including key module of MCODE, degree, maximum neighborhood component (MNC), and maximal clique centrality (MCC), were used to identify the hub genes within Cytoscape. The correlation between hub genes and infiltrated immune cells was evaluated to determine potential immune-related genes. The expression analysis and diagnosis value analysis of potential immune-related genes were performed. Finally, the expression analysis with GSE57338 and relationship analysis with the comparative toxicogenomics database (CTD) were performed to identify the key immune-related genes in DCM. A total of 80 DEGs were screened for DCM. Enrichment analysis revealed that DEGs were involved in the immune-related pathological process. Immune infiltration analysis indicated a potentially abnormal immune response in DCM. Four up-regulated genes (COL1A2, COL3A1, CD53, and POSTN) were identified as potential immune-related genes. Finally, three genes (COL1A2, COL3A1, and POSTN) were determined as the key immune-related genes in DCM via expression analysis with a validation set (GSE57338) and relationship analysis with CTD. Our study suggested that the upregulated COL1A2, COL3A1, and POSTN might be the key immune-related genes for DCM. Further studies are needed to validate the underlying mechanisms.


Assuntos
Cardiomiopatia Dilatada , Perfilação da Expressão Gênica , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Miocárdio/metabolismo , Biologia Computacional
14.
Diab Vasc Dis Res ; 19(6): 14791641221137736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341514

RESUMO

OBJECTIVE: The relationship between different glycaemic variability (GV) indexes and adverse cardiovascular outcomes is not well understood. This study aims to determine whether GV is related to the occurrence of adverse cardiovascular events in patients with acute coronary syndrome (ACS). METHODS: PubMed, EMBASE, and Web of Science were comprehensively searched from the establishment of databases to 29 June 2022. The relationship between two important GV indexes, including the mean amplitude of glycemic excursion (MAGE) and standard deviation (SD), and the adverse cardiovascular events in ACS patients were evaluated, respectively. RESULTS: A total of 11 studies with 3709 ACS patients were included. Pooled results showed that patients with higher GV had significantly increased risk of adverse cardiovascular events, including MAGE (relative risk [RR] = 1.76, 95% CI: 1.40 to 2.22, p < 0.001, I2 = 25%) and SD (RR = 2.14, 95% CI: 1.73 to 2.66, p < 0.001, I2 = 0%). CONCLUSIONS: Increased GV is related to the poor prognosis in patients with ACS. Additionally, more well-designed studies comparing different indicators of GV with adverse cardiovascular events in ACS patients are still warranted.


Assuntos
Síndrome Coronariana Aguda , Hiperglicemia , Humanos , Síndrome Coronariana Aguda/complicações , Síndrome Coronariana Aguda/diagnóstico , Glicemia
15.
Front Genet ; 13: 971808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212153

RESUMO

Background: As the most prevalent valvular heart disease, calcific aortic valve disease (CAVD) has become a primary cause of aortic valve stenosis and insufficiency. We aim to illustrate the roles of immune related genes (IRGs) and immune cells infiltration in the occurrence of CAVD. Methods: Integrative meta-analysis of expression data (INMEX) was adopted to incorporate multiple gene expression datasets of CAVD from Gene Expression Omnibus (GEO) database. By matching the differentially expressed genes (DEGs) to IRGs from "ImmPort" database, differentially expressed immune related genes (DEIRGs) were screened out. We performed enrichment analysis and found that DEIRGs in CAVD were closely related to inflammatory response and immune cells infiltration. We also constructed protein-protein interaction (PPI) network of DEIRGs and identified 5 key DEIRGs in CAVD according to the mixed character calculation results. Moreover, CIBERSORT algorithm was used to explore the profile of infiltrating immune cells in CAVD. Based on Spearman's rank correlation method, correlation analysis between key DEIRGs and infiltrating immune cells was performed. Results: A total of 220 DEIRGs were identified and the enrichment analysis of DEIRGs showed that they were significantly enriched in inflammatory responses. PPI network was constructed and PTPN11, GRB2, SYK, PTPN6 and SHC1 were identified as key DEIRGs. Compared with normal aortic valve tissue samples, the proportion of neutrophils, T cells CD4 memory activated and macrophages M0 was elevated in calcified aortic valves tissue samples, as well as reduced infiltration of macrophages M2 and NK cells activated. Furthermore, key DEIRGs identified in the present study, including PTPN11, GRB2, PTPN6, SYK, and SHC1, were all significantly correlated with infiltration of various immune cells. Conclusion: This meta-analysis suggested that PTPN11, GRB2, PTPN6, SYK, and SHC1 might be key DEIRGs associated with immune cells infiltration, which play a pivotal role in pathogenesis of CAVD.

16.
J Clin Med ; 11(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956085

RESUMO

Background: Age is an independent risk factor of the progress and prognosis of atrial fibrillation (AF). However, ablation outcomes between elderly and younger patients with AF remain elusive. Methods: Cochrane Library, Embase, PubMed, and Web of Science were systematically searched up to 1 April 2022. Studies comparing AF ablation outcomes between elderly and younger patients and comprising outcomes of AF ablation for elderly patients were included. Trial sequential analysis (TSA) was performed to adjust for random error and lower statistical power in our meta-analysis. Subgroup analysis identified possible determinants of outcome impact for elderly patients after ablation. Moreover, linear and quadratic prediction fit plots with confidence intervals were performed, as appropriate. Results: A total of 27 studies with 113,106 AF patients were eligible. Compared with the younger group, the elderly group was significantly associated with a lower rate of freedom from AF (risk ratio [RR], 0.95; p = 0.008), as well as a higher incidence of safety outcomes (cerebrovascular events: RR, 1.64; p = 0.000; serious hemorrhage complications: RR, 1.50; p = 0.035; all-cause death: RR, 2.61; p = 0.003). Subgroup analysis and quadratic prediction fit analysis revealed the follow-up time was the potential determinant of freedom from AF for elderly patients after AF ablation. Conclusions: Our meta-analysis suggests that elderly patients may have inferior efficacy and safety outcomes to younger patients with AF ablation. Moreover, the follow-up time may be a potential determinant of outcome impact on freedom from AF for elderly patients after AF ablation.

17.
J Thorac Dis ; 14(6): 2187-2200, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35813708

RESUMO

Background: Enhanced late sodium current (INaL) is reportedly related to an increased risk of atrial fibrillation (AF). Moricizine, as a widely used anti-arrhythmia drug for suppressing ventricular tachycardia, has also been shown to prevent paroxysmal AF. However, the mechanism of its therapeutic effect remains poorly understood. Methods: Angiotensin II (Ang II) was induced in C57Bl/6 mice (male wild-type) for 4 weeks to increase the susceptibility of AF, and acetylcholine-calcium chloride was used to induce AF. The whole-cell patch-clamp technique was used to detect INaL from isolated atrial myocytes. The expression of proteins in atrial of mice and HL-1 cells were examined by Western-blot. Results: The results showed that moricizine significantly inhibited Ang II-mediated atrial enlargement and reduced AF vulnerability. We found that the densities of INaL were enhanced in Ang II-treated left and right atrial cardiomyocytes. Simultaneously, the Ang II-induced increase in INaL currents density was alleviated by the administration of moricizine, and no alteration in Nav1.5 expression was observed. In normal isolated atrial myocytes, moricizine significantly reduced Sea anemone toxin II (ATX II)-enhanced INaL density with a reduction of peak sodium currents. In addition, moricizine reduced the Ang II-induced upregulation of phosphorylated calcium/calmodulin-dependent protein kinase-II (p-CaMKII) in both the left and right atria. In HL-1 cells, moricizine also reduced the upregulation of p-CaMKII with Ang II and ATX II intervention, respectively. Conclusions: Our results indicate that Ang II enhances the INaL via activation of CaMKII. Moricizine inhibits INaL and reduces CaMKII activation, which may be one of the mechanisms of moricizine suppression of AF.

18.
Bioengineered ; 13(5): 13739-13751, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35707846

RESUMO

Glucose fluctuation is more harmful than sustained hyperglycemia, but the effect on cardiomyocyte apoptosis have not yet been clarified. In this study, we aim to identify the effect of glucose fluctuation on cardiomyocyte apoptosis and explore the underlying mechanism. Sprague-Dawley rats were intraperitoneally injected with streptozotocin (STZ) and divided into three groups: controlled diabetic group (C-STZ); uncontrolled diabetic group (U-STZ) and glucose fluctuated diabetic group (GF-STZ). After twelve weeks, echocardiography, Hematoxylin-eosin (HE) staining, and Masson staining were adopted to assess the cardiac function and pathological changes. TUNEL staining was used to detect apoptotic cells. Expressions of apoptosis-related proteins and key molecules in the endoplasmic reticulum (ER) stress pathway were determined via western blots. Further, primary cardiomyocytes incubated in different glucose conditions were treated with the inhibitor of ER stress to explore the causative role of ER stress in glucose fluctuation-induced cardiomyocyte apoptosis. In vivo, we demonstrated that glucose fluctuation promoted cardiomyocyte apoptosis, and were more harmful to cardiomyocytes than sustained hyperglycemia. Moreover, glucose fluctuation significantly triggered ER stress signaling pathway. In vitro, primary cardiomyocyte apoptosis induced by glucose fluctuation and the activation of ER stress were significantly attenuated by 4-PBA, which is an ER stress inhibitor. Above all, glucose fluctuation can promote cardiomyocyte apoptosis through triggering the ER stress signaling pathway in diabetic rats and in primary cardiomyocytes.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Hiperglicemia , Animais , Apoptose , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
19.
Front Pharmacol ; 13: 911704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721210

RESUMO

Hydrogen sulfide (H2S) has been highlighted as an important gasotransmitter in mammals. A growing number of studies have indicated that H2S plays a key role in the pathophysiology of vascular diseases and physiological vascular homeostasis. Alteration in H2S biogenesis has been reported in a variety of vascular diseases and H2S supplementation exerts effects of vasodilation. Accumulating evidence has shown vascular potassium channels activation is involved in H2S-induced vasodilation. This review aimed to summarize and discuss the role of H2S in the regulation of vascular tone, especially by interaction with different vascular potassium channels and the underlying mechanisms.

20.
Front Cardiovasc Med ; 9: 871654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571170

RESUMO

Background: The long-term outcomes of ablation with vein of Marshall ethanol infusion (VOM-ABL) compared with ablation alone in patients with atrial fibrillation (AF) remains elusive. We aimed to explore whether VOM-ABL showed better long-term benefits and screen the potential determinants of outcome impact of VOM-ABL procedure. Methods: PubMed, Cochrane Library, Web of Science, and Embase were searched up to 1st September 2021. Studies comparing the long-term (one-year or longer) outcomes between VOM-ABL and ablation alone were included. Subgroup analysis identified potential determinants for VOM-ABL procedure. Results: Compared with ablation alone, VOM-ABL was associated with a significantly higher rate of long-term freedom from AF/AT (risk ratio [RR], 1.28; 95% confidence interval [CI], 1.12-1.47; p = 0.00) and successful mitral isthmus (MI) block (RR, 1.52; 95% CI, 1.16-1.99; p = 0.00), whereas, there was no significant difference in pericardial effusion, stroke/transient ischemic attack (TIA), and all-cause death. Subgroup analysis identified two significant treatment-covariate interactions: one was ablation strategy subgroup (pulmonary vein isolation plus linear and/or substrate ablation [PVI+]; RR, 1.41; 95% CI, 1.27-1.56 vs. PVI; RR, 1.05; 95% CI, 0.92-1.19, p = 0.00 for interaction) for freedom from AF/AT, while the other was VOM-ABL group sample size subgroup (≥ 100; RR, 1.98; 95% CI, 1.24-3.17 vs. <100; RR, 1.20; 95% CI, 1.10-1.30, p = 0.04 for interaction) for MI block. Conclusions: This meta-analysis demonstrates that VOM-ABL has superior efficacy and comparable safety over ablation alone in AF patients with long-term follow-up. Moreover, PVI+ and VOM-ABL group sample size ≥ 100 may be associated with a great impact on freedom from AF/AT and MI block, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA