Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105589, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141758

RESUMO

Several P2Y nucleotide receptors have been shown to be involved in the early stage of adipocyte differentiation in vitro and insulin resistance in obese mice; however, the exact receptor subtype(s) and its underlying molecular mechanism in relevant human cells are unclear. Here, using human primary visceral preadipocytes as a model, we found that during preadipocyte-to-mature adipocyte differentiation, the P2Y2 nucleotide receptor (P2Y2R) was the most upregulated subtype among the eight known P2Y receptors and the only one further dramatically upregulated after inflammatory TNFα treatment. Functional studies indicated that the P2Y2R induced intracellular Ca2+, ERK1/2, and JNK signaling but not the p38 pathway. In addition, stimulation of the P2Y2R suppressed basal and insulin-induced phosphorylation of AKT, accompanied by decreased GLUT4 membrane translocation and glucose uptake in mature adipocytes, suggesting a role of P2Y2R in insulin resistance. Mechanistically, we found that activation of P2Y2R did not increase lipolysis but suppressed PIP3 generation. Interestingly, activation of P2Y2R triggered Gi-protein coupling, and pertussis toxin pretreatment largely inhibited P2Y2R-mediated ERK1/2 signaling and cAMP suppression. Further, treatment of the cells with AR-C 118925XX, a selective P2Y2R antagonist, significantly inhibited adipogenesis, and P2Y2R knockout decreased mouse body weight gain with smaller eWAT mass infiltrated with fewer macrophages as compared to WT mice in response to a Western diet. Thus, we revealed that terminal adipocyte differentiation and inflammation selectively upregulate P2Y2R expression and that P2Y2R mediates insulin resistance by suppressing the AKT signaling pathway, highlighting P2Y2R as a potential new drug target to combat obesity and type-2 diabetes.


Assuntos
Adipogenia , Resistência à Insulina , Receptores Purinérgicos P2Y2 , Animais , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Resistência à Insulina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais/genética , Células Cultivadas , Camundongos Endogâmicos C57BL , Regulação para Cima , Transportador de Glucose Tipo 4/metabolismo , Transporte Proteico/genética , Lipólise/genética , Adipogenia/genética
2.
iScience ; 26(6): 106898, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378329

RESUMO

Metformin, created in 1922, has been the first-line therapy for treating type 2 diabetes mellitus for almost 70 years; however, its mechanism of action remains controversial, partly because most prior studies used supratherapeutic concentrations exceeding 1 mM despite therapeutical blood concentrations of metformin being less than 40 µM. Here we report metformin, at 10-30 µM, blocks high glucose-stimulated ATP secretion from hepatocytes mediating its antihyperglycemic action. Following glucose administration, mice demonstrate increased circulating ATP, which is prevented by metformin. Extracellular ATP through P2Y2 receptors (P2Y2R) suppresses PIP3 production, compromising insulin-induced AKT activation while promoting hepatic glucose production. Furthermore, metformin-dependent improvements in glucose tolerance are abolished in P2Y2R-null mice. Thus, removing the target of extracellular ATP, P2Y2R, mimics the effects of metformin, revealing a new purinergic antidiabetic mechanism for metformin. Besides unraveling long-standing questions in purinergic control of glucose homeostasis, our findings provide new insights into the pleiotropic actions of metformin.

3.
Front Mol Biosci ; 7: 569414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195415

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) was first detected in patients with pneumonia in December 2019 in China and it spread rapidly to the rest of the world becoming a global pandemic. Several observational studies have reported that cancer is a risk factor for COVID-19. On the other hand, ACE2, a receptor for the SARS-CoV-2 virus, was found to be aberrantly expressed in many tumors. However, the characterization of aberrant ACE2 expression in malignant tumors has not been elucidated. Here, we conducted a systematic analysis of the ACE2 expression profile across 31 types of tumors. METHODS: Distribution of ACE2 expression was analyzed using the GTEx, CCLE, TCGA pan-cancer databases. We evaluated the effect of ACE2 on clinical prognosis using the Kaplan-Meier survival plot and COX regression analysis. Correlation between ACE2 and immune infiltration levels was investigated in various cancer types. Additionally, the correlation between ACE2 and immune neoantigen, TMB, microsatellite instability, Mismatch Repair Genes (MMRs), HLA gene members, and DNA Methyltransferase (DNMT) was investigated. The frequency of ACE2 gene mutation in various tumors was analyzed. Functional enrichment analysis was conducted in various cancer types using the GSEA method. RESULTS: In normal tissues, ACE2 was highly expressed in almost all 31 organs tested. In cancer cell lines, the expression level of ACE2 was low to medium. Although aberrant expression was observed in most cancer types, high expression of ACE2 was not linked to OS, DFS, RFS, and DFI in most tumors in TCGA pan-cancer data. We found that ACE2 expression was significantly correlated with the infiltrating levels of macrophages and dendritic cells, CD4+ T cells, CD8+ T cells, and B cells in multiple tumors. A positive correlation between ACE2 expression and immune neoantigen, TMB, and microsatellite instability was found in multiple cancers. GSEA analysis which was carried out to determine the effect of ACE2 on tumors indicated that several cancer-associated pathways and immune-related pathways were hyperactivated in the high ACE2 expression group of most tumors. CONCLUSION: These findings suggest that ACE2 is not correlated with prognosis in most cancer types. However, elevated ACE2 is significantly correlated with immune infiltrating levels, including those of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs in multiple cancers, especially in lung and breast cancer patients. These findings suggest that ACE2 may affect the tumor environment in cancer patients with COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA