Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Phys Rev Lett ; 130(21): 219702, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295096
3.
Nat Commun ; 13(1): 1197, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256604

RESUMO

In ordinary materials, electrons conduct both electricity and heat, where their charge-entropy relations observe the Mott formula and the Wiedemann-Franz law. In topological quantum materials, the transverse motion of relativistic electrons can be strongly affected by the quantum field arising around the topological fermions, where a simple model description of their charge-entropy relations remains elusive. Here we report the topological charge-entropy scaling in the kagome Chern magnet TbMn6Sn6, featuring pristine Mn kagome lattices with strong out-of-plane magnetization. Through both electric and thermoelectric transports, we observe quantum oscillations with a nontrivial Berry phase, a large Fermi velocity and two-dimensionality, supporting the existence of Dirac fermions in the magnetic kagome lattice. This quantum magnet further exhibits large anomalous Hall, anomalous Nernst, and anomalous thermal Hall effects, all of which persist to above room temperature. Remarkably, we show that the charge-entropy scaling relations of these anomalous transverse transports can be ubiquitously described by the Berry curvature field effects in a Chern-gapped Dirac model. Our work points to a model kagome Chern magnet for the proof-of-principle elaboration of the topological charge-entropy scaling.

4.
Phys Rev Lett ; 127(17): 176601, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739297

RESUMO

Topological insulators (TIs) are an exciting discovery because of their robustness against disorder and interactions. Recently, second-order TIs have been attracting increasing attention, because they host topologically protected 1D hinge states in 3D or 0D corner states in 2D. A significantly critical issue is whether the second-order TIs also survive interactions, but it is still unexplored. We study the effects of weak Coulomb interactions on a 3D second-order TI, with the help of renormalization-group calculations. We find that the 3D second-order TIs are always unstable, suffering from two types of topological phase transitions. One is from second-order TI to TI, the other is to normal insulator. The first type is accompanied by emergent time-reversal and inversion symmetries and has a dynamical critical exponent κ=1. The second type does not have the emergent symmetries but has nonuniversal dynamical critical exponents κ<1. Our results may inspire more inspections on the stability of higher-order topological states of matter and related novel quantum criticalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA