Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Med Sci ; 44(1): 212-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393529

RESUMO

OBJECTIVE: Both sequential embryo transfer (SeET) and double-blastocyst transfer (DBT) can serve as embryo transfer strategies for women with recurrent implantation failure (RIF). This study aims to compare the effects of SeET and DBT on pregnancy outcomes. METHODS: Totally, 261 frozen-thawed embryo transfer cycles of 243 RIF women were included in this multicenter retrospective analysis. According to different embryo quality and transfer strategies, they were divided into four groups: group A, good-quality SeET (GQ-SeET, n=38 cycles); group B, poor-quality or mixed-quality SeET (PQ/MQ-SeET, n=31 cycles); group C, good-quality DBT (GQ-DBT, n=121 cycles); and group D, poor-quality or mixed-quality DBT (PQ/MQ-DBT, n=71 cycles). The main outcome, clinical pregnancy rate, was compared, and the generalized estimating equation (GEE) model was used to correct potential confounders that might impact pregnancy outcomes. RESULTS: GQ-DBT achieved a significantly higher clinical pregnancy rate (aOR 2.588, 95% CI 1.267-5.284, P=0.009) and live birth rate (aOR 3.082, 95% CI 1.482-6.412, P=0.003) than PQ/MQ-DBT. Similarly, the clinical pregnancy rate was significantly higher in GQ-SeET than in PQ/MQ-SeET (aOR 4.047, 95% CI 1.218-13.450, P=0.023). The pregnancy outcomes of GQ-SeET were not significantly different from those of GQ-DBT, and the same results were found between PQ/MQ-SeET and PQ/MQ-DBT. CONCLUSION: SeET relative to DBT did not seem to improve pregnancy outcomes for RIF patients if the embryo quality was comparable between the two groups. Better clinical pregnancy outcomes could be obtained by transferring good-quality embryos, no matter whether in SeET or DBT. Embryo quality plays a more important role in pregnancy outcomes for RIF patients.


Assuntos
Transferência Embrionária , Resultado da Gravidez , Feminino , Humanos , Gravidez , Coeficiente de Natalidade , Transferência Embrionária/métodos , Taxa de Gravidez , Estudos Retrospectivos
2.
J Biol Chem ; 299(10): 105240, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690682

RESUMO

Upstream stimulating factors (USFs), including USF1 and USF2, are key components of the transcription machinery that recruit coactivators and histone-modifying enzymes. Using the classic basic helix-loop-helix leucine zipper (bHLH-LZ) domain, USFs bind the E-box DNA and form tetramers that promote DNA looping for transcription initiation. The structural basis by which USFs tetramerize and bind DNA, however, remains unknown. Here, we report the crystal structure of the complete bHLH-LZ domain of USF2 in complex with E-box DNA. We observed that the leucine zipper (LZ) of USF2 is longer than that of other bHLH-LZ family transcription factors and that the C-terminus of USF2 forms an additional α-helix following the LZ region (denoted as LZ-Ext). We also found the elongated LZ-Ext facilitates compact tetramer formation. In addition to the classic interactions between the basic region and DNA, we show a highly conserved basic residue in the loop region, Lys271, participates in DNA interaction. Together, these findings suggest that USF2 forms a tetramer structure with a bent elongated LZ-Ext region, providing a molecular basis for its role as a key component of the transcription machinery.

3.
Mol Ther ; 31(9): 2662-2680, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37469143

RESUMO

Cancer metastatic organotropism is still a mystery. The liver is known to be susceptible to cancer metastasis and alcoholic injury. However, it is unclear whether and how alcohol facilitates liver metastasis and how to intervene. Here, we show that alcohol preferentially promotes liver metastasis in colon-cancer-bearing mice and post-surgery pancreatic cancer patients. The mechanism is that alcohol triggers an extra- and intrahepatic crosstalk to reshape an immunosuppressive liver microenvironment. In detail, alcohol upregulates extrahepatic IL-6 and hepatocellular IL-6 receptor expression, resulting in hepatocyte STAT3 signaling activation and downstream lipocalin-2 (Lcn2) upregulation. Furthermore, LCN2 promotes T cell-exhaustion neutrophil recruitment and cancer cell epithelial plasticity. In contrast, knocking out hepatocellular Stat3 or systemic Il6 in alcohol-treated mice preserves the liver microenvironment and suppresses liver metastasis. This mechanism is reflected in hepatocellular carcinoma patients, in that alcohol-associated signaling elevation in noncancerous liver tissue indicates adverse prognosis. Accordingly, we discover a novel application for BBI608, a small molecular STAT3 inhibitor that can prevent liver metastasis. BBI608 pretreatment protects the liver and suppresses alcohol-triggered premetastatic niche formation. In conclusion, under extra- and intrahepatic crosstalk, the alcoholic injured liver forms a favorable niche for cancer cell metastasis, while BBI608 is a promising anti-metastatic agent targeting such microenvironments.


Assuntos
Benzofuranos , Neoplasias Hepáticas , Camundongos , Animais , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
4.
ACS Chem Biol ; 18(6): 1271-1277, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37272735

RESUMO

The involvement of low-molecular-weight thiols in the biosynthesis of natural products is rarely reported. During lincomycin A biosynthesis, ergothioneine (EGT) is incorporated in the S-glycosylation catalyzed by LmbT. In contrast to the widely reported glycosylation of nitrogen and oxygen atoms, the glycosylation of sulfur atoms is less studied. In particular, the crystal structure of enzymes that glycosylate thiols on small molecules rather than peptides has not been reported. Here, we report the crystal structures of LmbT in apo form and in complex with GDP and EGT S-conjugated lincosamine. We found that LmbT has a characteristic glycosyltransferase type B fold, which forms a symmetric homotetramer. The substrates are bound deeply in the catalytic cleft. Consistent with the substrate structure, LmbT does not have the large peptide binding groove of the previously reported S-glycosyltransferase. Combined with site-directed mutagenesis, we propose a catalytic mechanism for the unusual EGT-mediated S-glycosylation in natural product biosynthesis.


Assuntos
Ergotioneína , Lincomicina , Glicosilação , Compostos de Sulfidrila , Glicosiltransferases/metabolismo
5.
Commun Biol ; 6(1): 107, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707692

RESUMO

Aminoacyl-tRNA synthetases (AARSs), a family of essential protein synthesis enzymes, are attractive targets for drug development. Although several different types of AARS inhibitors have been identified, AARS covalent inhibitors have not been reported. Here we present five unusual crystal structures showing that threonyl-tRNA synthetase (ThrRS) is covalently inhibited by a natural product, obafluorin (OB). The residue forming a covalent bond with OB is a tyrosine in ThrRS active center, which is not commonly modified by covalent inhibitors. The two hydroxyl groups on the o-diphenol moiety of OB form two coordination bonds with the conserved zinc ion in the active center of ThrRS. Therefore, the ß-lactone structure of OB can undergo ester exchange reaction with the phenolic group of the adjacent tyrosine to form a covalent bond between the compound and the enzyme, and allow its nitrobenzene structure to occupy the binding site of tRNA. In addition, when this tyrosine was replaced by a lysine or even a weakly nucleophilic arginine, similar bonds could also be formed. Our report of the mechanism of a class of AARS covalent inhibitor targeting multiple amino acid residues could facilitate approaches to drug discovery for cancer and infectious diseases.


Assuntos
Aminoacil-tRNA Sintetases , Treonina-tRNA Ligase , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Tirosina , Zinco , Treonina-tRNA Ligase/metabolismo , Sítios de Ligação
6.
Huan Jing Ke Xue ; 43(9): 4636-4646, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096604

RESUMO

Efficient utilization of organic materials based on the rich resources in the karst region can promote soil fertility. Microorganisms have a crucial influence on soil phosphorus availability. phoD is considered to be the encoding phosphatase gene that can reflect the hydrolysis of organophosphorus compounds for the soil bacterial community. Molecular analysis of the phoD-harboring bacterial gene provides insight into promoting soil phosphorus availability under different fertilization managements. However, the effects of organic materials on soil phosphorus fractions associated with phoD-harboring bacterial communities are poorly understood. This study comprehensively investigated the effects of organic materials on soil phosphorus availability and explored environmental drivers of phoD-harboring bacteria in the Karst region. Here, six treatments were designed in the field as follows:non-fertilized control (CK), inorganic fertilization (NPK), inorganic fertilization combined with straw (NPKS), inorganic fertilization combined with manure (NPKM), inorganic fertilization combined with sludge (NPKL), and inorganic fertilization combined with sugarcane ash (NPKA). The phoD-harboring bacterial community in Karst region soil was analyzed using high-throughput sequencing. The results showed that the content of total P (TP), Olsen-P, and Ca2-P increased with the years after organic material application, whereas the content of CaCl2-P first decreased and then increased. Compared to that under the CK treatment, organic material application, especially NPKL treatment, significantly increased soil total nitrogen (TN), TP, Olsen-P, CaCl2-P, and Ca2-P contents, followed by those in the NPKA and NPKM treatments. Correlation analysis showed that the contents of CaCl2-P, Ca2-P, and Olsen-P were significantly positively correlated with soil exchangeable calcium (Ca-ex) content. Redundancy analysis (RDA) showed that TN, Ca-ex, soil organic carbon (SOC), and total potassium (TK) contents were the key factors affecting soil P fractions. Using high-throughput sequencing, we found that only NPKS increased the richness of phoD-harboring bacteria compared to that under the control treatment. No significant difference was observed in the phoD-harboring bacterial community among all treatments. The RDA model selected the Ca-ex, TK, Olsen-P, pH, and SOC as the key environmental predictors for the phoD-harboring bacterial community. In summary, soil phosphorus availability can be improved through the input of organic materials and inorganic fertilizer combined with manure, sludge, and ash. These additions were suitable for nutrient management and sustainable development in farmland soil in the Karst region of Guangxi.


Assuntos
Fósforo , Solo , Bactérias/genética , Cloreto de Cálcio , Carbono , China , Esterco , Nitrogênio/análise , Fósforo/análise , Esgotos , Solo/química
7.
Front Microbiol ; 12: 736165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925257

RESUMO

Understanding soil microbial element limitation and its relation with the microbial community can help in elucidating the soil fertility status and improving nutrient management of planted forest ecosystems. The stand age of a planted forest determines the aboveground forest biomass and structure and underground microbial function and diversity. In this study, we investigated 30 plantations of Camellia oleifera distributed across the subtropical region of China that we classified into four stand ages (planted <9 years, 9-20 years, 21-60 years, and >60 years age). Enzymatic stoichiometry analysis showed that microbial metabolism in the forests was mainly limited by C and P. P limitation significantly decreased and C limitation slightly increased along the stand age gradient. The alpha diversity of the soil microbiota remained steady along stand age, while microbial communities gradually converged from scattered to clustered, which was accompanied by a decrease in network complexity. The soil bacterial community assembly shifted from stochastic to deterministic processes, which probably contributed to a decrease in soil pH along stand age. Our findings emphasize that the stand age regulated the soil microbial metabolism limitation and community assembly, which provides new insight into the improvement of C and P management in subtropical planted forest.

8.
Biochem Biophys Res Commun ; 569: 41-46, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225079

RESUMO

The transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) is a member of the microphthalmia (MiT/TFE) transcription factor family. Dysregulation of TFE3 due to chromosomal abnormalities is associated with a subset of human renal cell carcinoma. Little structural information of this key transcription factor has been reported. In this study, we determined the crystal structure of the helix-loop-helix leucine zipper (HLH-Lz) domain of human TFE3 to a resolution of 2.6 Å. The HLH-Lz domain is critical for the dimerization and function of TFE3. Our structure showed that the conserved HLH region formed a four-helix bundle structure with a predominantly hydrophobic core, and the leucine zipper region contributed to the function of TFE3 by promoting dimer interaction and providing partner selectivity. Together, our results elucidated the dimerization mechanism of this important transcription factor, providing the structural basis for the development of inhibiting strategies for treating TFE3 dysregulated diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Sequências Hélice-Alça-Hélice , Zíper de Leucina , Conformação Proteica , Multimerização Proteica , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cristalografia por Raios X , Regulação da Expressão Gênica , Células HeLa , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Modelos Moleculares
9.
Nanoscale ; 6(17): 10235-42, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25056728

RESUMO

High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a promising catalyst for high power metal/air battery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA