Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Carbohydr Polym ; 339: 122239, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823909

RESUMO

A new zirconium and cerium-modified polyvinyl alcohol (PVA) sodium carboxymethyl cellulose (NaCMC) film (PVA/CMC-Zr-Ce) was synthesized thru a high-speed shear-assisted method and its adsorption for the removal of fluoride was studied, in which the NaCMC provided -COONa for ion exchange between Na and Zr-Ce, thus the loading amount of Zr-Ce on films was accordingly increased. The morphology and structure of PVA/CMC-Zr-Ce were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Besides, the mechanical properties, water contact angle, and swelling ratio of film were also evaluated. The addition of high-speed shear improved the dispersion of the emulsion system, and PVA/CMC-Zr-Ce film with good adsorption performance and film stability was prepared. While, it was found that the adsorption capacity could reach 67.25 mg/g and equilibrium time could reach 20 min. The adsorption mechanism of PVA/CMC-Zr-Ce revealed that ion exchange between hydroxide and fluoride, electrostatic interactions and complexation were the dominating influencing factors. Based on these findings, it can be concluded that PVA/CMC-Zr-Ce film- synthesized with high-speed shear assistance technique is a promising adsorbent for fluoride removal from water.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38797005

RESUMO

Chironomidae, non-biting midges, a diverse and abundant insect group in global aquatic ecosystems, represent an exceptional model for investigating genetic adaptability mechanisms in aquatic insects due to their extensive species diversity and resilience to various environmental conditions. The cuticle in insects acts as the primary defense against ecological pressures. Cuticular Proteins (CPs) determine cuticle characteristics, facilitating adaptation to diverse challenges. However, systematic annotation of CP genes has only been conducted for one Chironomidae species, Propsilocerus akamusi, by our team. In this study, we expanded this annotation by identifying CP genes in eight additional Chironomidae species, covering all Chironomidae species with available genome data. We identified a total of 889 CP genes, neatly categorized into nine CP families: 215 CPR RR1 genes, 272 CPR RR2 genes, 23 CPR RR3 genes, 21 CPF genes, 16 CPLCA genes, 19 CPLCG genes, 28 CPLCP genes, 77 CPAP genes, and 37 Tweedle genes. Subsequently, we conducted a comprehensive phylogenetic analysis of CPs within the Chironomidae family. This expanded annotation of CP genes across diverse Chironomidae species significantly contributes to our understanding of their remarkable adaptability.


Assuntos
Chironomidae , Evolução Molecular , Proteínas de Insetos , Filogenia , Animais , Chironomidae/genética , Chironomidae/classificação , Proteínas de Insetos/genética , Genoma de Inseto , Anotação de Sequência Molecular , Adaptação Fisiológica
3.
Heliyon ; 10(4): e26201, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434011

RESUMO

BACKGROUND AND PURPOSE: To examine the diagnostic value of imaging features in cavernous sinus hemangioma (CSH). MATERIALS AND METHODS: The clinical and imaging data of patients with pathologically confirmed CSH, cavernous sinus meningioma, trigeminal schwannoma and pituitary adenoma invading the cavernous sinus between May 2017 and May 2022 were retrospectively analyzed. The cases were divided into the CSH and non-CSH groups to summarize the magnetic resonance imaging (MRI) characteristics of CSH. Univariate χ2 analysis was performed to assess five indexes, including signal intensity on T2WI, homogeneity of T2WI, enhancement of enhanced T1, enhanced T1 with dural tail sign, and cavernous sinus swelling and extrusion sign. RESULTS: There were significant differences in four features, including hyperintensity on T2WI, homogeneity of T2WI, T1-enhanced without meningeal tail sign, and cavernous sinus swelling and extrusion sign between the CSH and non-CSH groups, with cavernous sinus swelling and extrusion sign showing the most pronounced distinction, with a sensitivity of 100%, a specificity of 93.02%, and an accuracy of 94.23%. The four features could be jointly used as diagnostic criteria, with a sensitivity of 94.44%, a specificity of 100.00%, and an accuracy of 99.04%. CONCLUSION: Cavernous sinus swelling and extrusion sign is a reliable imaging index for CSH diagnosis. Homogenous hyperintensity or marked hyperintensity on T2WI, enhanced T1 without dural tail sign, and cavernous sinus swelling and extrusion sign could be jointly used as diagnostic criteria, which may improve the accuracy of CSH diagnosis.

4.
Heliyon ; 10(1): e23960, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226269

RESUMO

Electrical stimulation (ES) of the spinal cord is a promising therapy for functional rehabilitation after spinal cord injury (SCI). However, the specific mechanism of action is poorly understood. We designed and applied an implanted ES device in the SCI area in rats and determined the effect of ES on the treatment of motor dysfunction after SCI using behavioral scores. Additionally, we examined the molecular characteristics of the samples using proteomic and transcriptomic sequencing. The differential molecules between groups were identified using statistical analyses. Molecular, network, and pathway-based analyses were used to identify group-specific biological features. ES (0.5 mA, 0.1 ms, 50 Hz) had a positive effect on motor dysfunction and neuronal regeneration in rats after SCI. Six samples (three independent replicates in each group) were used for transcriptome sequencing; we obtained 1026 differential genes, comprising 274 upregulated genes and 752 downregulated genes. A total of 10 samples were obtained: four samples in the ES group and six samples in the SCI group; for the proteome sequencing, 48 differential proteins were identified, including 45 up-regulated and three down-regulated proteins. Combined transcriptomic and proteomic studies have shown that the main enrichment pathway is the hedgehog signaling pathway. Western blot results showed that the expression levels of Sonic hedgehog (SHH) (P < 0.001), Smoothened (SMO) (P = 0.0338), and GLI-1 (P < 0.01) proteins in the ES treatment group were significantly higher than those in the SCI group. The immunofluorescence results showed significantly increased expression of SHH (P = 0.0181), SMO (P = 0.021), and GLI-1 (P = 0.0126) in the ES group compared with that in the SCI group. In conclusion, ES after SCI had a positive effect on motor dysfunction and anti-inflammatory effects in rats. Moreover, transcriptomic and proteomic sequencing also provided unique perspectives on the complex relationships between ES on SCI, where the SHH signaling pathway plays a critical role. Our study provides a significant theoretical foundation for the clinical implementation of ES therapy in patients with SCI.

5.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38131215

RESUMO

Plasticity, the ability of cancer cells to transition between differentiation states without genomic alterations, has been recognized as a major source of intratumoral heterogeneity. It has a crucial role in cancer metastasis and treatment resistance. Thus, targeting plasticity holds tremendous promise. However, the molecular mechanisms of plasticity in cancer cells remain poorly understood. Several studies found that mRNA, which acts as a bridge linking the genetic information of DNA and protein, has an important role in translating genotypes into phenotypes. The present review provided an overview of the regulation of cancer cell plasticity occurring via changes in the transcription and editing of mRNAs. The role of the transcriptional regulation of mRNA in cancer cell plasticity was discussed, including DNA­binding transcriptional factors, DNA methylation, histone modifications and enhancers. Furthermore, the role of mRNA editing in cancer cell plasticity was debated, including mRNA splicing and mRNA modification. In addition, the role of non­coding (nc)RNAs in cancer plasticity was expounded, including microRNAs, long intergenic ncRNAs and circular RNAs. Finally, different strategies for targeting cancer cell plasticity to overcome metastasis and therapeutic resistance in cancer were discussed.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Adaptação Fisiológica , DNA , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , RNA Longo não Codificante/genética , RNA Mensageiro , Fenótipo
6.
J Drug Target ; 31(8): 817-831, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37545435

RESUMO

Alzheimer's disease (AD) is a grievous neurodegenerative disorder and a major form of senile dementia, which is partially caused by abnormal amyloid-beta peptide deposition and Tau protein phosphorylation. But until now, the exact pathogenesis of AD and its treatment strategy still need to investigate. Fortunately, natural products have shown potential as therapeutic agents for treating symptoms of AD due to their neuroprotective activity. To identify the excellent lead compounds for AD control from natural products of herbal medicines, as well as, detect their modes of action, suitable animal models are required. Drosophila melanogaster (fruit fly) is an important model for studying genetic and cellular biological pathways in complex biological processes. Various Drosophila AD models were broadly used for AD research, especially for the discovery of neuroprotective natural products. This review focused on the research progress of natural products in AD disease based on the fruit fly AD model, which provides a reference for using the invertebrate model in developing novel anti-AD drugs.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/metabolismo , Drosophila/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
7.
Front Oncol ; 13: 1011476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546426

RESUMO

Introduction: Glioblastoma (GBM) is the most invasive type of glioma, is insensitive to radiotherapy and chemotherapy, and has high proliferation and invasive ability, with a 5-year survival rate of <5%. Cuproptosis-related genes (CRGs) have been successfully used to predict the prognosis of many types of tumors. However, the relationship between cuproptosis and GBM remains unclear. Methods: Here, we sought to identify CRGs in GBM and elucidate their role in the tumor immune microenvironment and prognosis. To that aim, changes in CRGs in The Cancer Genome Atlas (TCGA) transcriptional and Gene Expression Omnibus (GEO) datasets (GEO4290 and GEO15824) were characterized, and the expression patterns of these genes were analyzed. Results: A risk score based on CRG expression characteristics could predict the survival and prognosis of patients with GBM and was significantly associated with immune infiltration levels and the expression of CD47 and CD24, which are immune checkpoints of the "don't eat me "signal. Furthermore, we found that the CDKN2A gene may predict GBM sensitivity and resistance to drugs. Discussion: Our findings suggest that CRGs play a crucial role in GBM outcomes and provide new insights into CRG-related target drugs/molecules for cancer prevention and treatment.

8.
Adv Exp Med Biol ; 1199: 15-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37460725

RESUMO

Medical imaging is a technology that studies the interaction between human body and irradiations of X-ray, ultrasound, magnetic field, etc. and represents anatomical structures of human organs/tissues with the implication of irradiation attenuation in the form of grayscales. With these medical images, detailed information on health status and disease diagnosis may be judged by clinical physicians to determine an appropriate therapy approach. This chapter will give a systematic introduction on the modalities, classifications, basic principles, and biomedical applications of traditional medical imaging along with the types, construction, and major features of the corresponding contrast agents or imaging probes.


Assuntos
Meios de Contraste , Tecnologia , Humanos , Ultrassonografia , Meios de Contraste/química
9.
Sci Total Environ ; 900: 165680, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37499811

RESUMO

Pb pollution can harm human health and the ecosystem. Therefore, it is worthwhile to study the metabolic processes of heavy metals in individual bodies and their influence on ecological systems. In this work, we analyzed the genetic responses and physiological changes of D. melanogaster which took diets exposed to different doses of Pb using transcriptomic analysis, ICP-MS, and various other physiological methods. We found that the Pb accumulated in D. melanogaster in a nonlinear pattern with the increase of Pb content in food. Metallothioneins (Mtns), especially the MtnB directly affects the accumulation and excretion of metal Pb in D. melanogaster, and causes the nonlinear accumulation. Metal regulatory transcription factor-1 (MTF-1) is involved in the regulation of Pb-induced high expressions of Mtns. Furthermore, an interaction between the metal metabolism pathway and xenobiotic response pathway leads to the cross-tolerances of Pb-exposed D. melanogaster to insecticides and other toxins. The oxidative stress induced by Pb toxicity may be the bridge between them. Our findings provide a physiological and molecular genetic basis for further study of the accumulation and metabolism of Pb in D. melanogaster.


Assuntos
Drosophila melanogaster , Metais Pesados , Animais , Humanos , Drosophila melanogaster/genética , Chumbo/toxicidade , Chumbo/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Ecossistema , Metais Pesados/metabolismo
10.
Int J Biol Macromol ; 236: 123627, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858084

RESUMO

To generate birefringence in artificial materials has attracted increasing attention in terms of their potential for applications in sensor, tissue engineering and optical devices. Silk materials with patterned structures presented unique optical features, however, effectively fabricating of structural anisotropy in silk materials to directly tailor their birefringence is still challenging. Silk fibroin birefringent fibers (SBFs) with tunable birefringence were obtained in this study via a strategy that combined injection technique and binary solvent-exchange-induced self-assembly (BSEISA). The structural deformation of these SBFs that introduced by external stimulus such as tensile and solvent swelling was critical to their birefringence. As a result, pink, yellow, green, cyan, and purple were successfully achieved in the interference color of the SBFs with an exchanging solvent of 25, 55, 75, 90 wt% ethanol aqueous solution, and methanol respectively. Moreover, we respectively exchanged these SBFs against with Congo red (SBF-CR), methyl orange (SBF-MO), methylene blue (SBF-MB) and rhodamine B (SBF-RhB) solutions to produce fibers with diversity in their birefringent performance. Two types of patterns were designed and thereafter constructed by (1) SBF\SBF-CR\SBF-RhB, and (2) SBF\SBF-MB\SBF-CR. Interestingly, the patterns both displayed a letter of "A" in natural light, while displayed different letters of (1) "H" and (2) "U" in polarized light. This study demonstrated that these SBFs with unique optical and birefringent performances are anticipated to act as sensors and code labels for optical applications.


Assuntos
Fibroínas , Fibroínas/química , Solventes/química , Birrefringência , Seda/química , Metanol
11.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840304

RESUMO

Sweet potato virus disease (SPVD) is one of the main virus diseases in sweet potato [Ipomoea batatas (L.) Lam] that seriously affects the yield of sweet potato. Therefore, the establishment of a simple, rapid and effective method to detect SPVD is of great significance for the early warning and prevention of this disease. In this study, the experiment was carried out in two years to compare the grafting method and side grafting method for three sweet potato varieties, and the optimal grafting method was selected. After grafting with seedlings infected with SPVD, the symptomatic diagnosis and serological detection were performed in 86 host varieties, and the differences in SPVD resistance were determined by fluorescence quantitative PCR (qRT-PCR) and nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA). The results showed that the survival rate of grafting by insertion method was significantly higher than that by side grafting method, and the disease resistance of different varieties to sweet potato virus disease was tested. The detection method established in this study can provide theoretical basis for identification and screening of resistant sweet potato varieties.

12.
Int J Biol Macromol ; 223(Pt A): 555-566, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36356871

RESUMO

The insect cuticle is a sophisticated chitin-protein extracellular structure for mutable functions. The cuticles varied their structures and properties in different species, and the same species but in different regions or at different stages, to fill the requirements of different functions. The alteration of cuticle structures may also be induced due to challenges by some environmental crises, such as pollution exposures. The physical properties of the cuticle were determined by the cuticle proteins (CPs) they contain. The cuticle proteins are large protein groups in all insects, which are commonly divided into different families according to their conserved protein sequence motifs. Although Chironomidae is an abundant and universal insect in global aquatic ecosystems and a popular model for aquatic toxicology, no systematic annotation of CPs was done for any species in Chironomidae before. In this work, we annotated the CP genes of Propsilocerus akamusi, the most abundant Chironomidae species in Asia. A total of 160 CP genes were identified, and 97 of them could be well classified into eight CP families: 76 CPR genes can be subdivided into three groups (further divided into three subgroups: 36 RR1 genes, 37 RR2 genes, and 3 RR3 genes), 2 CPF genes, 3 CPLCA genes, 1 CPLCG gene, 8 CPAP genes, and 3 Tweedle genes. Additionally, we analyzed the response of P. akamusi CP genes at expression level to Cu exposure, which is related to the high heavy metal tolerance and the earlier onset of pupariation in heavy metal polluted water.


Assuntos
Chironomidae , Metais Pesados , Humanos , Animais , Proteínas de Insetos/genética , Ecossistema , Chironomidae/genética , Perfilação da Expressão Gênica , Metais Pesados/toxicidade , Metais Pesados/metabolismo
13.
Front Neurosci ; 16: 854199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061604

RESUMO

Spontaneous bursts in neuronal networks with propagation involving a large number of synchronously firing neurons are considered to be a crucial feature of these networks both in vivo and in vitro. Recently, learning has been shown to improve the association and synchronization of spontaneous events in neuronal networks by promoting the firing of spontaneous bursts. However, little is known about the relationship between the learning phase and spontaneous bursts. By combining high-resolution measurement with a 4,096-channel complementary metal-oxide-semiconductor (CMOS) microelectrode array (MEA) and graph theory, we studied how the learning phase influenced the initiation of spontaneous bursts in cultured networks of rat cortical neurons in vitro. We found that a small number of selected populations carried most of the stimulus information and contributed to learning. Moreover, several new burst propagation patterns appeared in spontaneous firing after learning. Importantly, these "learning populations" had more hubs in the functional network that governed the initiation of spontaneous burst activity. These results suggest that changes in the functional structure of learning populations may be the key mechanism underlying increased bursts after learning. Our findings could increase understanding of the important role that synaptic plasticity plays in the regulation of spontaneous activity.

14.
Arch Insect Biochem Physiol ; 111(4): e21958, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35942563

RESUMO

Depending on their chemical structure, insecticides enter the insect body either through the cuticle or by ingestion (mode of entry [MoE]), and, naturally, harm or even kill insects through different mechanisms (modes of action). In parallel, they trigger a systemic detoxification response, especially by activation of detoxification gene expression. We monitored the acute genetic alterations of known xenobiotic response target genes against five different insecticides with two most common MoEs (contact toxicity and stomach toxicity), found that: 1. only a few genes were detected responding to acute exposure to insecticides (LD90 ); 2. The expression of cyp12d1 was upregulated in all experiments, except for dichlorodiphenyltrichloroethane exposure, suggesting that cyp12d1 is a general first response gene of the xenobiotic response; 3. The contact and stomach entries did not show any notable difference, both MoEs induced the response of JNK signaling pathway, possibly serving as the driver of the response of cyp12d1 and a few other genes. In conclusion, the changes in gene expression levels were relatively modest and no significant differences were found between the two MoEs, so the insecticide entry route does not seem to have an impact on the detoxification response. However, the two MoEs of the same insecticide showed different efficiencies in our test. Thus, the study of these two MoEs will help to develop more efficient release and management methods for the use of such insecticides.


Assuntos
Drosophila melanogaster , Inseticidas , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , DDT/toxicidade , Resistência a Inseticidas/genética
15.
Heliyon ; 8(4): e09232, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35399385

RESUMO

Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.

16.
World Neurosurg ; 160: e126-e141, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031519

RESUMO

OBJECTIVE: The oblique lateral locking plate system (OLLPS) is a novel internal fixation with a locking and reverse pedicle track screw configuration designed for oblique lumbar interbody fusion (OLIF). The OLLPS is placed in a single position through the oblique lateral surgical corridor to reduce operative time and complications associated with prolonged anesthesia and prone positioning. The purpose of this study was to verify the biomechanical effect of the OLLPS. METHODS: An intact finite element model of L1-S1 (intact) was established based on computed tomography images of a healthy male volunteer. The L4-L5 intervertebral space was selected as the surgical segment. The surgical models were established separately based on OLIF surgical procedures and different internal fixations: 1) stand-alone OLIF (SA); 2) OLIF with a 2-screw lateral plate; 3) OLIF with a 4-screw lateral plate; 4) OLIF with OLLPS; and 5) OLIF with bilateral pedicle screw fixation (BPS). After validation of the intact model, physiologic loads were applied to the superior surface of L1 to simulate motions such as flexion, extension, left bending, right bending, left rotation, and right rotation. The evaluation indices included the L4/5 range of motion, the L4 maximum displacement, and the maximum stresses of the superior and inferior end plates, the cage, and the supplemental fixation. RESULTS: During OLIF surgery, the OLLPS provided multiplanar stability similar to that provided by BPS. Compared with 2-screw lateral plate and 4-screw lateral plate, OLLPS had better biomechanical properties in terms of enhancing the instant stability of the surgical segment, reducing the stress on the superior and inferior end plates of the surgical segment, and decreasing the risk of cage subsidence. CONCLUSIONS: With a minimally invasive background, the OLLPS can be used as an alternative to BPS in OLIF and it has better prospects for clinical promotions and applications.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Fenômenos Biomecânicos/fisiologia , Análise de Elementos Finitos , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Masculino , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral/métodos
17.
Arch Insect Biochem Physiol ; 109(3): e21869, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088911

RESUMO

Insects have evolved a powerful detoxification system to protect themselves against environmental and anthropogenic xenobiotics including pesticides and nanoparticles. The resulting tolerance to insecticides is an immense problem in agriculture. In this study, we summarize advances in our understanding of insect xenobiotic responses: the detoxification strategies and the regulation mechanisms against xenobiotics including nanoparticles, the problem of response specificity and the potential usefulness of this study field for an elaborate pest management. In particular, we highlight that versatility of the detoxification system relies on the relatively unspecific recognition of a broad range of potential toxic substances that trigger either of various canonical xenobiotic responses signaling pathways, including CncC/Keap1, HR96, AHR/ARNT, GPCR, and MAPK/CREB. However, it has emerged that the actual response to an inducer may nevertheless be specific. There are two nonexclusive possibilities that may explain response specificity: (1) differential cross-talk between the known pathways and (2) additional, yet unidentified regulators and pathways of detoxification. Hence, a deeper and broader understanding of the regulation mechanisms of xenobiotic response in insects in the future might facilitate the development and application of highly efficient and environmentally friendly pest control methods, allowing us to face the challenge of the world population growth.


Assuntos
Inseticidas , Xenobióticos , Animais , Insetos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/metabolismo , Xenobióticos/toxicidade
18.
Methods Mol Biol ; 2347: 177-189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34472065

RESUMO

Fibrous proteins are promising bioinks for three-dimensional printing techniques to fabricate sophisticated structures that find applications in both biomedical engineering and materials science. The critical point of manufacturing these fibrous protein inks is to adjust the cross-linking and rheology properties of proteins that matching the requirements of various printing techniques. In recent years, 3D printing techniques such as extrusion-based printing, droplet-based printing, and light-assisted printing techniques have widely been applied to build sophisticated fibrous protein architectures. In this regard, a series of fibrous protein-based bioinks have been developed, such as bioinks prepared from silk fibroin, collagen, fibrin, gelatin, and recombinant spider silk. In this chapter, we present the protocols to make various fibrous protein inks, as well as how to use these bioinks to print 3D structures via different printing techniques.


Assuntos
Bioimpressão , Impressão Tridimensional , Fibroínas , Gelatina , Tinta , Seda , Engenharia Tecidual , Alicerces Teciduais
19.
Front Chem ; 9: 786354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976954

RESUMO

The study of different genes, chromosomes and the spatiotemporal relationship between them is of great significance in the field of biomedicine. CRISPR-Cas9 has become the most widely used gene editing tool due to its excellent targeting ability. In recent years, a series of advanced imaging technologies based on Cas9 have been reported, providing fast and convenient tools for studying the sites location of genome, RNA, and chromatin. At the same time, a variety of CRISPR-Cas9-based imaging systems have been developed, which are widely used in real-time multi-site imaging in vivo. In this review, we summarized the component and mechanism of CRISPR-Cas9 system, overviewed the NIR imaging and the application of NIR fluorophores in the delivery of CRISPR-Cas9, and highlighted advances of the CRISPR-Cas9-based imaging system. In addition, we also discussed the challenges and potential solutions of CRISPR-Cas9-based imaging methods, and looked forward to the development trend of the field.

20.
ACS Appl Mater Interfaces ; 12(52): 58212-58222, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33319989

RESUMO

A mechanical disintegration of waste wood biomass and freeze-induced assembly of colloidal nanowood were effectively deployed to explore ion-associated cellular foams (NWFs) with unidirectional channels. Under the assistance of inorganic ions, the as-fabricated foams were significantly enhanced in physical stability, compressive strength, flame retardancy, and thermal barrier, accounting for the tuning effects of pores and channels, surface charges, and microphase interaction by ion effects and freeze orientation. As a result, the vascular-like ion-doped channels benefited from quick capillary liquid transport. Under 1 sun illumination, NWF-V as a 3-D evaporator exhibited a high evaporation rate of 1.50 kg m-2 h-1 and a conversion efficiency of up to 88.9% for seawater desalination. Dramatically, an average of 12.5 kg m-2 of fresh water could be generated on each sunny day by outdoor NWFs for durability beyond 15 days. Under the drive of fuel combustion, an efficient conveying of ethanol or pump oil could be at rates of 0.44 and 0.26 mL min-1, respectively. Moreover, combustion flame with variable color was generated according to the doping cations in NWFs. Therefore, sustainable, green, facile, and multifunctional wood-based cellular foams could be tailored, scaled-up, and applied as color flame burners or desalination evaporators under combustion or solar drive in the energy and environment fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA