Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(37): 13848-13856, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37669547

RESUMO

l-Cysteine is a valuable sulfur-containing amino acid with applications across a wide range of fields. Recently, microbial fermentation has emerged as a method to produce l-cysteine. However, cellular redox stress from high levels of l-cysteine is a bottleneck for achieving efficient production. In this study, we aimed to facilitate l-cysteine biosynthesis by modulating cellular redox homeostasis through the introduction of the natural antioxidant astaxanthin in Corynebacterium glutamicum. To achieve this, we first introduced an exogenous astaxanthin synthesis module in C. glutamicum. Then, an l-cysteine-dependent autonomous bifunctional genetic switch was developed to dynamically regulate the l-cysteine and astaxanthin biosynthesis pathway to maintain cellular redox homeostasis. This regulation system achieved high biosynthesis of astaxanthin, which significantly facilitated l-cysteine production. Finally, engineered strain Cg-10 produced 8.45 g/L l-cysteine and 95 mg/L astaxanthin in a 5 L bioreactor, both of which are the highest reported levels in C. glutamicum.


Assuntos
Corynebacterium glutamicum , Cisteína , Corynebacterium glutamicum/genética , Homeostase , Oxirredução
2.
Appl Environ Microbiol ; 89(9): e0090423, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768042

RESUMO

Sulfane sulfur, a collective term for hydrogen polysulfide and organic persulfide, often damages cells at high concentrations. Cells can regulate intracellular sulfane sulfur levels through specific mechanisms, but these mechanisms are unclear in Corynebacterium glutamicum. OxyR is a transcription factor capable of sensing oxidative stress and is also responsive to sulfane sulfur. In this study, we found that OxyR functioned directly in regulating sulfane sulfur in C. glutamicum. OxyR binds to the promoter of katA and nrdH and regulates its expression, as revealed via in vitro electrophoretic mobility shift assay analysis, real-time quantitative PCR, and reporting systems. Overexpression of katA and nrdH reduced intracellular sulfane sulfur levels by over 30% and 20% in C. glutamicum, respectively. RNA-sequencing analysis showed that the lack of OxyR downregulated the expression of sulfur assimilation pathway genes and/or sulfur transcription factors, which may reduce the rate of sulfur assimilation. In addition, OxyR also affected the biosynthesis of L-cysteine in C. glutamicum. OxyR overexpression strain Cg-2 accumulated 183 mg/L of L-cysteine, increased by approximately 30% compared with the control (142 mg/L). In summary, OxyR not only regulated sulfane sulfur levels by controlling the expression of katA and nrdH in C. glutamicum but also facilitated the sulfur assimilation and L-cysteine synthesis pathways, providing a potential target for constructing robust cell factories of sulfur-containing amino acids and their derivatives. IMPORTANCE C. glutamicum is an important industrial microorganism used to produce various amino acids. In the production of sulfur-containing amino acids, cells inevitably accumulate a large amount of sulfane sulfur. However, few studies have focused on sulfane sulfur removal in C. glutamicum. In this study, we not only revealed the regulatory mechanism of OxyR on intracellular sulfane sulfur removal but also explored the effects of OxyR on the sulfur assimilation and L-cysteine synthesis pathways in C. glutamicum. This is the first study on the removal of sulfane sulfur in C. glutamicum. These results contribute to the understanding of sulfur regulatory mechanisms and may aid in the future optimization of C. glutamicum for biosynthesis of sulfur-containing amino acids.


Assuntos
Corynebacterium glutamicum , Fatores de Transcrição , Fatores de Transcrição/genética , Corynebacterium glutamicum/genética , Cisteína , Enxofre , Aminoácidos
3.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37061784

RESUMO

AIMS: This study aimed to functionally identify the potential L-homoserine transporters in Escherichia coli, and to generate the promising beneficial mutants by targeted directed evolution for improving the robustness and efficiency of microbial cell factories. METHODS AND RESULTS: By constructing a series of gene deletion and overexpression strains, L-homoserine tolerance assays revealed that RhtA was an efficient and major L-homoserine exporter in E. coli, whereas RhtB and RhtC exhibited relatively weak transport activities for L-homoserine. Real-time RT-PCR analysis suggested that the expression levels of these three target mRNAs were generally variably enhanced when cells were subjected to L-homoserine stress. Based on in vivo continuous directed evolution and growth-couple selections, three beneficial mutations of RhtA exporter (A22V, P119L, and T235I) with clearly increased tolerance against L-homoserine stress were quickly obtained after two rounds of mutagenesis-selection cycles. L-homoserine export assay revealed that the RhtA mutants exhibited different degrees of improvement in L-homoserine export capacity. Further studies suggested that a combination of these beneficial sites led to synergistic effects on conferring L-homoserine-resistance phenotypes. Moreover, the introduction of RhtA beneficial mutants into the L-homoserine-producing strains could facilitate increased amounts of L-homoserine in the shake-flask fermentation. CONCLUSIONS: In this study, we provided further evidence that RhtA serves as a major L-homoserine exporter in E. coli, and obtained several RhtA beneficial mutants, including A22V, P119L, and T235I that contributed to improving the L-homoserine resistance phenotypes and the production efficiency in microbial chassis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Homosserina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Engenharia Metabólica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA