Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 15(1): 189, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32997231

RESUMO

The defects into the hexagonal network of a sp2-hybridized carbon atom have been demonstrated to have a significant influence on intrinsic properties of graphene systems. In this paper, we presented a study of temperature-dependent Raman spectra of G peak and D' band at low temperatures from 78 to 318 K in defective monolayer to few-layer graphene induced by ion C+ bombardment under the determination of vacancy uniformity. Defects lead to the increase of the negative temperature coefficient of G peak, with a value almost identical to that of D' band. However, the variation of frequency and linewidth of G peak with layer number is contrary to D' band. It derives from the related electron-phonon interaction in G and D' phonon in the disorder-induced Raman scattering process. Our results are helpful to understand the mechanism of temperature-dependent phonons in graphene-based materials and provide valuable information on thermal properties of defects for the application of graphene-based devices.

2.
Nanoscale Res Lett ; 15(1): 43, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32067107

RESUMO

MoS2 and ReS2 are typical transition metal chalcogenides with many excellent electrical and optical properties. Due to different lattice symmetries, ReS2 offers one more dimension than MoS2 to tune its physical properties. In this paper, we studied the polarized reflection spectra in single-layer MoS2 and ReS2. The explicit difference identifies strong angle-dependent properties in single-layer ReS2 distinct from single-layer MoS2. The results of samples on both SiO2/Si substrate and quartz substrate show single-layer ReS2 is in-plane anisotropic and the change period of reflection intensity is estimated with the polarization angles.

3.
Small ; 13(25)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28508534

RESUMO

Due to weak interactions between micrometer-wavelength infrared (IR) light and nanosized samples, a high signal to noise ratio is a prerequisite in order to precisely characterize nanosized samples using IR spectroscopy. Traditional micrometer-thick window substrates, however, have considerable IR absorption which may introduce unavoidable deformations and interruptions to IR spectra of nanoscale samples. A promising alternative is the use of a suspended graphene substrate which has ultrahigh IR transmittance (>97.5%) as well as unique mechanical properties. Here, an effective method is presented for fabrication of suspended graphene over circular holes up to 150 µm in diameter to be utilized as a transparent substrate for IR spectroscopy. It is demonstrated that the suspended graphene has little impact on the measured IR spectra, an advantage which has led to the discovery of several missing vibrational modes of a 20 nm thick PEO film measured on a traditional CaF2 substrate. This can provide a better understanding of molecules' fine structures and status of hanging bands. The unique optical properties of suspended graphene are determined to be superior to those of conventional IR window materials, giving this new substrate great potential as part of a new generation of IR transparent substrates, especially for use in examining nanoscale samples.

4.
Phys Chem Chem Phys ; 19(4): 3176-3181, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28083572

RESUMO

The newly developed two-dimensional layered materials provide a perfect platform for valley-spintronics exploration. To determine the prospect of utilizing the valley degree of freedom, it is of great importance to directly detect and understand the valley dynamics in these materials. Here, the exciton valley dynamics in monolayer WSe2 is investigated by the two-color pump-probe magneto-optical Kerr technique. By tuning the probe photon energy in resonance with the free excitons and trions, the valley relaxation time of different excitonic states in monolayer WSe2 is determined. Valley relaxation time of the free exciton in monolayer WSe2 is confirmed to be several picoseconds. A slow valley polarization relaxation process is observed to be associated with the trions, showing that the valley lifetime for trions is one order of magnitude longer than that of free excitons. This finding suggests that trion can be a good candidate for valleytronics applications.

5.
Nanoscale ; 8(15): 8324-32, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27035503

RESUMO

Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.

6.
Nanotechnology ; 27(14): 145704, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906625

RESUMO

Transition-metal dichalcogenide (TMD) semiconductors have been widely studied due to their distinctive electronic and optical properties. The property of TMD flakes is a function of their thickness, or layer number (N). How to determine the N of ultrathin TMD materials is of primary importance for fundamental study and practical applications. Raman mode intensity from substrates has been used to identify the N of intrinsic and defective multilayer graphenes up to N = 100. However, such analysis is not applicable to ultrathin TMD flakes due to the lack of a unified complex refractive index (ñ) from monolayer to bulk TMDs. Here, we discuss the N identification of TMD flakes on the SiO2/Si substrate by the intensity ratio between the Si peak from 100 nm (or 89 nm) SiO2/Si substrates underneath TMD flakes and that from bare SiO2/Si substrates. We assume the real part of ñ of TMD flakes as that of monolayer TMD and treat the imaginary part of ñ as a fitting parameter to fit the experimental intensity ratio. An empirical ñ, namely, ñ(eff), of ultrathin MoS2, WS2 and WSe2 flakes from monolayer to multilayer is obtained for typical laser excitations (2.54 eV, 2.34 eV or 2.09 eV). The fitted ñ(eff) of MoS2 has been used to identify the N of MoS2 flakes deposited on 302 nm SiO2/Si substrate, which agrees well with that determined from their shear and layer-breathing modes. This technique of measuring Raman intensity from the substrate can be extended to identify the N of ultrathin 2D flakes with N-dependent ñ. For application purposes, the intensity ratio excited by specific laser excitations has been provided for MoS2, WS2 and WSe2 flakes and multilayer graphene flakes deposited on Si substrates covered by a 80-110 nm or 280-310 nm SiO2 layer.

7.
Sci Rep ; 5: 15625, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26490157

RESUMO

We have systematically examined the circular polarization of monolayer WSe2 at different temperature, excitation energy and exciton density. The valley depolarization in WSe2 is experimentally confirmed to be governed by the intervalley electron-hole exchange interaction. More importantly, a non-monotonic dependence of valley circular polarization on the excitation power density has been observed, providing the experimental evidence for the non-monotonic dependence of exciton intervalley scattering rate on the excited exciton density. The physical origination of our experimental observations has been proposed to be in analogy to the D'yakonov-Perel' mechanism that is operative in conventional GaAs quantum well systems. Our experimental results are fundamentally important for well understanding the valley pseudospin relaxation in atomically thin transition metal dichalcogenides.

8.
ACS Nano ; 9(7): 7440-9, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26062640

RESUMO

Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures.

9.
Nanoscale ; 7(17): 8135-41, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25875074

RESUMO

An SiO2/Si substrate has been widely used to support two-dimensional (2d) flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The Raman intensity of the vibration modes of 2d flakes is used to identify the layer number of 2d flakes on the SiO2/Si substrate, however, such an intensity is usually dependent on the flake quality, crystal orientation and laser polarization. Here, we used graphene flakes, a prototype system, to demonstrate how to use the intensity ratio between the Si peak from SiO2/Si substrates underneath graphene flakes and that from bare SiO2/Si substrates for the layer-number identification of graphene flakes up to 100 layers. This technique is robust, fast and nondestructive against sample orientation, laser excitation and the presence of defects in the graphene layers. The effect of relevant experimental parameters on the layer-number identification was discussed in detail, such as the thickness of the SiO2 layer, laser excitation wavelength and numerical aperture of the used objective. This paves the way to use Raman signals from dielectric substrates for layer-number identification of ultrathin flakes of various 2d materials.

10.
Chem Soc Rev ; 44(9): 2757-85, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25679474

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps and recent advances in the synthesis, characterization and device fabrication of the representative MoS2, WS2, WSe2 and MoSe2 TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphene, the atoms within each layer in 2D TMDs are joined together by covalent bonds, while van der Waals interactions keep the layers together. This makes the physical and chemical properties of 2D TMDs layer-dependent. In this review, we discuss the basic lattice vibrations of 2D TMDs from monolayer, multilayer to bulk material, including high-frequency optical phonons, interlayer shear and layer breathing phonons, the Raman selection rule, layer-number evolution of phonons, multiple phonon replica and phonons at the edge of the Brillouin zone. The extensive capabilities of Raman spectroscopy in investigating the properties of TMDs are discussed, such as interlayer coupling, spin-orbit splitting and external perturbations. The interlayer vibrational modes are used in rapid and substrate-free characterization of the layer number of multilayer TMDs and in probing interface coupling in TMD heterostructures. The success of Raman spectroscopy in investigating TMD nanosheets paves the way for experiments on other 2D crystals and related van der Waals heterostructures.

11.
Opt Lett ; 39(22): 6450-3, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25490491

RESUMO

We report the nonlinear optical (NLO) properties of vertically stood WS2 nanoplates excited by 532-nm picosecond laser light. The nanoplates were synthesized by a no-catalyst thermal evaporation process. Raman spectroscopy and x-ray diffraction pattern indicate that the nanoplates are of high crystal quality. The nanoplates exhibit large nonlinear saturable absorption but negligible nonlinear refraction. Mechanisms of the NLO response are proposed.

12.
Nat Commun ; 5: 5309, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25382099

RESUMO

Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures.

13.
Sci Rep ; 4: 5722, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25031087

RESUMO

Coherent longitudinal acoustic phonon is generated and detected in multilayer Molybdenum Disulphide (MoS2) with number of layers ranging from 10 to over 1300 by femtosecond laser pulse. For thin MoS2, the excited phonon frequency exhibits a standing wave nature and shows linear dependence on the sample thickness. The frequency varies from 40 GHz to 0.2 THz (10 layers), which promises possible application in THz frequency mechanical resonators. This linear thickness dependence gradually disappears in thicker samples above about 150 layers, and the oscillation period shows linear dependence on the probe wavelength. From both the oscillation period of the coherent phonon and the delay time of acoustic echo, we can deduce a consistent sound velocity of 7.11*10(3) m/s in MoS2. The generation mechanisms of the coherent acoustic phonon are also discussed through pump power dependent measurement.

14.
Nano Lett ; 13(8): 3870-7, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23899342

RESUMO

Molybdenum disulfide (MoS2) is back in the spotlight because of the indirect-to-direct bandgap tunability and valley related physics emerging in the monolayer regime. However, rigorous control of the monolayer thickness is still a huge challenge for commonly utilized physical exfoliation and chemical synthesis methods. Herein, we have successfully grown predominantly monolayer MoS2 on an inert and nearly lattice-matching mica substrate by using a low-pressure chemical vapor deposition method. The growth is proposed to be mediated by an epitaxial mechanism, and the epitaxial monolayer MoS2 is intrinsically strained on mica due to a small adlayer-substrate lattice mismatch (~2.7%). Photoluminescence (PL) measurements indicate strong single-exciton emission in as-grown MoS2 and room-temperature PL helicity (circular polarization ~0.35) on transferred samples, providing straightforward proof of the high quality of the prepared monolayer crystals. The homogeneously strained high-quality monolayer MoS2 prepared in this study could competitively be exploited for a variety of future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA