Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 20(5): 1364-1376, 2025 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39075897

RESUMO

Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix-a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.

2.
Int Immunopharmacol ; 141: 112956, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168022

RESUMO

DNA vaccines are prospective for their efficient manufacturing process, but their immunogenicity is limited as they cannot efficiently induce CD8+ T cell responses. A promising approach is to induce cross-presentation by targeting antigens to DCs. Flt3L can expand the number of type 1 conventional DCs and thereby improve cross-presentation. In this study, we first constructed a DNA vaccine expressing soluble PD1 and found that the therapeutic effect of targeting DCs with only the sPD1 vaccine was limited. When combined the vaccine with Flt3L, the anti-tumor effect was significantly enhanced. Considering the complexity of tumors and that a single method may not be able to activate a large number of effective CD8+ T cells, we combined different drugs and the vaccine with Flt3L based on the characteristics of different tumors. In 4T1 model, we reduced Tregs through cyclophosphamide. In Panc02 model, we increased activated DCs by using aCD40. Both strategies triggered strong CD8+ T cell responses and significantly improved the therapeutic effect. Our study provides important support for the clinical exploration of DC-targeted DNA vaccines in combination with Flt3L.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Células Dendríticas , Proteínas de Membrana , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1 , Vacinas de DNA , Vacinas de DNA/imunologia , Animais , Células Dendríticas/imunologia , Receptor de Morte Celular Programada 1/imunologia , Vacinas Anticâncer/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Feminino , Camundongos , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos C57BL
3.
Plants (Basel) ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065472

RESUMO

Soil potassium deficiency is a common issue limiting agricultural productivity. Potassium-solubilizing bacteria (KSB) show significant potential in mitigating soil potassium deficiency, improving soil quality, and enhancing plant growth. However, different KSB strains exhibit diverse solubilization mechanisms, environmental adaptability, and growth-promoting abilities. In this study, we isolated a multifunctional KSB strain ZHS-1, which also has phosphate-solubilizing and IAA-producing capabilities. 16S rDNA sequencing identified it as Pantoea vagans. Scanning electron microscopy (SEM) showed that strain ZHS-1 severely corroded the smooth, compact surface of potassium feldspar into a rough and loose state. The potassium solubilization reached 20.3 mg/L under conditions where maltose was the carbon source, sodium nitrate was the nitrogen source, and the pH was 7. Organic acid metabolism profiling revealed that strain ZHS-1 primarily utilized the EMP-TCA cycle, supplemented by pathways involving pantothenic acid, glyoxylic acid, and dicarboxylic acids, to produce large amounts of organic acids and energy. This solubilization was achieved through direct solubilization mechanisms. The strain also secreted IAA through a tryptophan-dependent metabolic pathway. When strain ZHS-1 was inoculated into the rhizosphere of rice, it demonstrated significant growth-promoting effects. The rice plants exhibited improved growth and root development, with increased accumulation of potassium and phosphorus. The levels of available phosphorus and potassium in the rhizosphere soil also increased significantly. Additionally, we observed a decrease in the relative abundance of Actinobacteria and Proteobacteria in the rice rhizosphere soil, while the relative abundance of genera associated with acid production and potassium solubilization, such as Gemmatimonadota, Acidobacteria, and Chloroflexi, as well as Cyanobacteria, which are beneficial to plant growth, increased. These findings contribute to a deeper understanding of the potassium solubilization mechanisms of strain ZHS-1 and highlight its potential as a plant growth-promoting rhizobacteria.

4.
Pharmaceuticals (Basel) ; 17(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794176

RESUMO

Mesenchymal stem cells (MSCs) have shown great potential in the treatment of several inflammatory diseases due to their immunomodulatory ability, which is mediated by exosomes secreted by MSCs (MSC-Exs). The incidence of inflammatory bowel disease (IBD) is increasing globally, but there is currently no long-term effective treatment. As an emerging therapy, MSC-Exs have proven to be effective in alleviating IBD experimentally, and the specific mechanism continues to be explored. The gut microbiota plays an important role in the occurrence and development of IBD, and MSCs and MSC-Exs can effectively regulate gut microbiota in animal models of IBD, but the mechanism involved and whether the outcome can relieve the characteristic dysbiosis necessary to alleviate IBD still needs to be studied. This review provides current evidence on the effective modulation of the gut microbiota by MSC-Exs, offering a basis for further research on the pathogenic mechanism of IBD and MSC-Ex treatments through the improvement of gut microbiota.

5.
ACS Appl Mater Interfaces ; 16(2): 2428-2437, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166369

RESUMO

Lithium batteries have been widely used in our daily lives for their high energy density and long-term stability. However, their safety problems are of paramount concern for consumers, which restricts their scale applications. Gel polymer electrolytes (GPEs) compensate for the defects of liquid leakage and lower ionic conductivity of solid electrolytes, which have attracted a lot of attention. Herein, a 3D interconnected highly porous structural gel electrolyte was prepared with alginate dressing as a host material, poly(ethylene oxide) (PEO), and a commercial liquid electrolyte. With rich polar functional groups and (CH2-CH2-O) segments on the polymer matrix, the transportation of Li+ is faster and uniform; thus, the formations of lithium dendrite were significantly inhibited. The cycle stability of symmetrical Li||Li batteries with modified composite electrolytes (SAA) is greatly improved, and the overpotential remains stable after more than 1000 h. Meanwhile, under the same conditions, the cycle performance of batteries with unmodified electrolytes is inferior and overpotentials are nearly 1 V after 100 h. Additionally, the capacity retention of Li||LiFePO4 with SAA is more than 95% after 200 cycles, while those of the others declined sharply. The alginate dressing-based GPEs can greatly enhance the mechanical and thermal stability of PEO-based GPEs, which provides an environmentally friendly avenue for gel electrolytes' applications in lithium batteries.

6.
Int Immunopharmacol ; 112: 109237, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152535

RESUMO

Fibroblast activation protein (FAPα) is a tumor stromal antigen expressed by cancer-associated fibroblasts (CAFs) in more than 90 % of malignant epithelial carcinomas. FAPα-based immunotherapy has been reported and showed that FAPα-specific immune response can remold immune microenvironment and contribute to tumor regression. Many FAPα-based vaccines have been investigated in preclinical trials, which can elicit strong and durable cytolytic T lymphocytes (CTL) with good safety. However, epitope-based FAPα vaccines are rarely reported. To break tolerance against self-antigens, analogue epitopes with modified peptides at the anchor residues are typically used to improve epitope immunogenicity. To investigate the feasibility of a FAPα epitope-based vaccine for cancer immunotherapy in vivo, we conducted a preclinical study to identify a homologous CTL epitope of human and mouse FAPα and obtained its analogue epitope in BALB/c mice, and explored the anti-tumor activity of their minigene vaccines in 4 T1 tumor-bearing mice. By using in silico epitope prediction tools and immunogenicity assays, immunodominant epitope FAP.291 (YYFSWLTWV) and its analogue epitope FAP.291I9 (YYFSWLTWI) were identified. The FAP.291-based epitope minigene vaccine successfully stimulated CTLs targeting CAFs and exhibited anti-tumor activity in a 4 T1 murine breast cancer model. Furthermore, although the analogue epitope FAP.291I9 enhanced FAP.291-specific immune responses, improvement of anti-tumor immunity effects was not observed. Check of immunosuppressive factors revealed that the high levels of IL-10, IL-13, myeloid-derived suppressor cells and iNOS induced by FAP.291I9 increased, which considered the main cause of the failure of the analogue epitope-based vaccine. Thus, we demonstrated for the first time that the FAP.291 minigene vaccine could induce mouse CTLs and also function as a tumor regression antigen, providing the basis for future studies of FAPα epitope-based vaccines. This study may also be valuable for further improvement of the immunogenicity of analogue epitope vaccines.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Camundongos , Humanos , Animais , Feminino , Gelatinases/metabolismo , Interleucina-10 , Serina Endopeptidases/metabolismo , Interleucina-13 , Epitopos , Epitopos Imunodominantes , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Antígenos de Neoplasias , Imunidade , Autoantígenos , Microambiente Tumoral
7.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139461

RESUMO

Charcot-Marie-Tooth (CMT) disease is the most common inherited neurodegenerative disorder with selective degeneration of peripheral nerves. Despite advances in identifying CMT-causing genes, the underlying molecular mechanism, particularly of selective degeneration of peripheral neurons remains to be elucidated. Since peripheral neurons are sensitive to multiple stresses, we hypothesized that daily repeated stress might be an essential contributor to the selective degeneration of peripheral neurons induced by CMT-causing mutations. Here, we mainly focused on the biological effects of the dominant missense mutation (S135F) in the 27-kDa small heat-shock protein HSPB1 under repeated heat shock. HSPB1S135F presented hyperactive binding to both α-tubulin and acetylated α-tubulin during repeated heat shock when compared with the wild type. The aberrant interactions with tubulin prevented microtubule-based transport of heat shock-induced misfolded proteins for the formation of perinuclear aggresomes. Furthermore, the transport of autophagosomes along microtubules was also blocked. These results indicate that the autophagy pathway was disrupted, leading to an accumulation of ubiquitinated protein aggregates and a significant decrease in cell adaptation to repeated stress. Our findings provide novel insights into the molecular mechanisms of HSPB1S135F-induced selective degeneration of peripheral neurons and perspectives for targeting autophagy as a promising therapeutic strategy for CMT neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas de Choque Térmico , Chaperonas Moleculares , Tubulina (Proteína) , Autofagia/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Mutação/genética , Tubulina (Proteína)/genética , Proteínas Ubiquitinadas/genética
8.
Hum Gene Ther ; 33(13-14): 757-764, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35369733

RESUMO

The safety, biodistribution, and pharmacokinetics of any new therapeutic tumor DNA vaccine must be evaluated in preclinical studies. We previously developed the DNA vaccine (CpDV-IL2-sPD1/MUC1 and survivin), which showed excellent antitumor effects in a variety of tumor models. In this study, we demonstrate the safety and biodistribution after immunization with naked DNA vaccine (10 mg/kg) by electroporation in a mice model. All mice reached the end of the study with good body conditions. By established and validated QPCR method, we found high-copy plasmid DNA at the injection site (muscle) on day 1 in all eight animals, followed by a downward trend. By day 49, a small amount of plasmid DNA was still detectable, but only in one mouse. On reproductive safety, no plasmids existed in the ovary at any time point. Also, only two of the 16 testis samples could detect a very small amount of DNA on days 7 and 14. The most important thing was that plasmids were cleared from almost all organs (heart, liver, spleen, lung, kidney, stomach, blood, thymus, intestine) on day 49. In summary, the results of our experiments demonstrate that the DNA vaccine delivered by electroporation was shown to be safe and merits further development for cancer treatment.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas de DNA , Animais , Vacinas Anticâncer/genética , DNA , Eletroporação , Feminino , Injeções Intramusculares , Masculino , Camundongos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA