Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 24(5): 793-804, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35469018

RESUMO

A decline in skeletal muscle mass and low muscular strength are prognostic factors in advanced human cancers. Here we found that breast cancer suppressed O-linked N-acetylglucosamine (O-GlcNAc) protein modification in muscle through extracellular-vesicle-encapsulated miR-122, which targets O-GlcNAc transferase (OGT). Mechanistically, O-GlcNAcylation of ryanodine receptor 1 (RYR1) competed with NEK10-mediated phosphorylation and increased K48-linked ubiquitination and proteasomal degradation; the miR-122-mediated decrease in OGT resulted in increased RYR1 abundance. We further found that muscular protein O-GlcNAcylation was regulated by hypoxia and lactate through HIF1A-dependent OGT promoter activation and was elevated after exercise. Suppressed O-GlcNAcylation in the setting of cancer, through increasing RYR1, led to higher cytosolic Ca2+ and calpain protease activation, which triggered cleavage of desmin filaments and myofibrillar destruction. This was associated with reduced skeletal muscle mass and contractility in tumour-bearing mice. Our findings link O-GlcNAcylation to muscular protein homoeostasis and contractility and reveal a mechanism of cancer-associated muscle dysregulation.


Assuntos
MicroRNAs , Neoplasias , Acetilglucosamina/metabolismo , Animais , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , N-Acetilglucosaminiltransferases/genética , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA