Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 986365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046588

RESUMO

Citrus is an essential horticultural fruit whose yield and quality are affected by salinity all over the world. The recognition and adaptive regulation of citrus against salt stress are important areas for cultivar improvement, but the vascular system signal transduction mechanism of the plant response to salt stress remains elusive. In this study, we constructed a dodder (Cuscuta spp.) linked Hamlin sweet orange (Citrus sinensis) plant community in which deliver a vascular signal through the dodder in response to salt stress. RNA-seq technology was used to analyze the gene expression profile of citrus leaves after salt treatment. The results showed that a vascular signal was transmitted to a dodder-linked host plant, triggering a transcriptional response to salt stress. However, the phenotypic and transudative ability of the dodder changed after 24 h. The salt treatment group (Group S) and the dodder-linked group (Group D) respectively contained 1,472 and 557 differentially expressed genes (DEGs). 454 of which were common to both groups. The results of our analysis revealed that the gene expression categories in Group D represented a highly consistent trend compared to the group S plants, indicating that the dodder-bridged vascular signals activated the stress-response of citrus leaves for transcriptomic reconfiguration. The KEGG pathway database and an analysis of key drivers revealed that phenylpropanoid biosynthesis, photosynthesis-antenna proteins, starch and sucrose metabolism, plant hormone signal transduction, circadian rhythm, and MAPK signaling pathways were significantly enriched as the critical genes during salt stress. A systemic signal in the dodder-bridged host significantly regulated abiotic stress-related secondary metabolic pathways, including those for phenylpropanoids, lignin, and lignans. The physiological indexes of photosynthetic intensity, respiration, and attractiveness among communities supported the transcriptional changes. Thus, our results indicate that salt stress-induced vascular system signals can be transmitted through the vascular system of a dodder linking citrus plants, revealing the genetic regulation and physiological changes of citrus leaves responding to plant stress signal transmission.

2.
Chin J Nat Med ; 20(4): 258-269, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35487596

RESUMO

Colorectal cancer (CRC) is the third most lethal cancer and leading cause of cancer mortality worldwide. A key driver of CRC development is colon inflammatory responses especially in patients with inflammatory bowl disease (IBD). It has been proved that Panax notoginseng saponins (PNS) have anti-inflammatory, anti-oxidant and anti-tumor effects. The chemopreventive and immunomodulatory functions of PNS on colitis-associated colorectal cancer (CAC) have not been evaluated.This present study was designed to study the potential protective effects of PNS on AOM/DSS-induced CAC mice to explore the possible mechanism of PNS against CAC. Our study showed that PNS significantly alleviated colitis severity and prevented the occurrence of CAC. Functional assays revealed that PNS relieved immunosuppression of Treg cells in the CAC microenvironment by inhibiting the expression of IDO1 mediated directly by signal transducer and activator of transcription 1 (STAT1) rather than phosphorylated STAT1. Ultimately, Rh1, one of the PNS metabolites, exhibited the best inhibitory effect on IDO1 enzyme activity. Our study showed that PNS exerted significant chemopreventive function and immunomodulatory properties on CAC. It could reduce macrophages accumulation and Treg cells differentiation to reshape the immune microenvironment of CAC. These findings provided a promising approach for CAC intervention.


Assuntos
Neoplasias Associadas a Colite , Colite , Panax notoginseng , Saponinas , Animais , Colite/complicações , Colite/tratamento farmacológico , Neoplasias Associadas a Colite/tratamento farmacológico , Humanos , Macrófagos , Camundongos , Saponinas/farmacologia , Saponinas/uso terapêutico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA