Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 14: 1182472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205980

RESUMO

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with strong genetic heterogeneity and more prevalent in males than females. Recent human genetic studies have identified multiple high-risk genes for ASD, which produce similar phenotypes, indicating that diverse genetic factors converge to common molecular pathways. We and others have hypothesized that activity-dependent neural signaling is a convergent molecular pathway dysregulated in ASD. However, the causal link between diminished activity-dependent neural signaling and ASD remains unclear. Brain-derived neurotrophic factor (BDNF) is a key molecule mediating activity-dependent neural signaling. We therefore hypothesize that diminished activity-dependent BDNF signaling could confer autism-like behavioral deficits. Here, we investigated the effect of diminished activity-dependent BDNF signaling on autism-like behavioral deficits by using mice with genetic knock-in of a human BDNF methionine (Met) allele, which has decreased activity-dependent BDNF release without altering basal BDNF level. Compared with wild-type (WT) controls, diminished activity-dependent BDNF signaling similarly induced anxiety-like behaviors in male and female mice. Notably, diminished activity-dependent BDNF signaling differentially resulted in autism-like social deficits and increased self-grooming in male and female mice, and male mice were more severe than female mice. Again, sexually dimorphic spatial memory deficits were observed in female BDNF+/Met mice, but not in male BDNF+/Met mice. Our study not only reveals a causal link between diminished activity-dependent BDNF signaling and ASD-like behavioral deficits, but also identifies previously underappreciated sex-specific effect of diminished activity-dependent BDNF signaling in ASD. These mice with genetic knock-in of the human BDNF Met variant provide a distinct mouse model for studying the cellular and molecular mechanisms underlying diminished activity-dependent neural signaling, the common molecular pathway dysregulated in ASD.

2.
Nat Commun ; 14(1): 91, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609445

RESUMO

Pleiotropic mechanisms have been implicated in Alzheimer's disease (AD), including transcriptional dysregulation, protein misprocessing and synaptic dysfunction, but how they are mechanistically linked to induce cognitive deficits in AD is unclear. Here we find that the histone methyltransferase Smyd3, which catalyzes histone H3 lysine 4 trimethylation (H3K4me3) to activate gene transcription, is significantly elevated in prefrontal cortex (PFC) of AD patients and P301S Tau mice, a model of tauopathies. A short treatment with the Smyd3 inhibitor, BCI-121, rescues cognitive behavioral deficits, and restores synaptic NMDAR function and expression in PFC pyramidal neurons of P301S Tau mice. Fbxo2, which encodes an E3 ubiquitin ligase controlling the degradation of NMDAR subunits, is identified as a downstream target of Smyd3. Smyd3-induced upregulation of Fbxo2 in P301S Tau mice is linked to the increased NR1 ubiquitination. Fbxo2 knockdown in PFC leads to the recovery of NMDAR function and cognitive behaviors in P301S Tau mice. These data suggest an integrated mechanism and potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Camundongos , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Cognição , Modelos Animais de Doenças , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Camundongos Transgênicos , Proteínas tau/metabolismo , Tauopatias/genética , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Mol Psychiatry ; 27(8): 3355-3366, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35296809

RESUMO

Large-scale genetic studies have revealed that the most prominent genes disrupted in autism are chromatin regulators mediating histone methylation/demethylation, suggesting the central role of epigenetic dysfunction in this disorder. Here, we show that histone lysine 4 dimethylation (H3K4me2), a histone mark linked to gene activation, is significantly decreased in the prefrontal cortex (PFC) of autistic human patients and mutant mice with the deficiency of top-ranking autism risk factor Shank3 or Cul3. A brief treatment of the autism models with highly potent and selective inhibitors of the H3K4me2 demethylase LSD1 (KDM1A) leads to the robust rescue of core symptoms of autism, including social deficits and repetitive behaviors. Concomitantly, LSD1 inhibition restores NMDA receptor function in PFC and AMPA receptor-mediated currents in striatum of Shank3-deficient mice. Genome-wide RNAseq and ChIPseq reveal that treatment of Shank3-deficient mice with the LSD1 inhibitor restores the expression and H3K4me2 occupancy of downregulated genes enriched in synaptic signaling and developmental processes. The immediate early gene tightly linked to neuronal plasticity, Egr1, is on the top list of rescued genes. The diminished transcription of Egr1 is recapitulated in PFC of autistic human patients. Overexpression of Egr1 in PFC of Shank3-deficient mice ameliorates social preference deficits. These results have for the first time revealed an important role of H3K4me2 abnormality in ASD pathophysiology, and the therapeutic potential of targeting H3K4me2 demethylase LSD1 or the downstream molecule Egr1 for ASD.


Assuntos
Transtorno Autístico , Histonas , Humanos , Camundongos , Animais , Histonas/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Cromatina , Modelos Animais de Doenças , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/metabolismo
4.
Neuropsychopharmacology ; 47(6): 1271-1279, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34703011

RESUMO

Human genetic sequencing has implicated epigenetic and synaptic aberrations as the most prominent risk factors for autism. Here we show that autistic patients exhibit the significantly lower histone acetylation and elevated HDAC2 expression in prefrontal cortex (PFC). The diminished histone acetylation is also recaptured in an autism mouse model with the deficiency of the Shank3 gene encoding a synaptic scaffolding protein. Treating young (5-week-old) Shank3-deficient mice with a 4-week ketogenic diet, which can act as an endogenous inhibitor of class I HDACs via the major product ß-hydroxybutyrate, elevates the level of histone acetylation in PFC neurons. Behavioral assays indicate that ketogenic diet treatment leads to the prolonged rescue of social preference deficits in Shank3-deficient mice. The HDAC downstream target genes encoding NMDA receptor subunits, GRIN2A and GRIN2B, are significantly reduced in PFC of autistic humans. Ketogenic diet treatment of Shank3-deficient mice elevates the transcription and histone acetylation of Grin2a and Grin2b, and restores the diminished NMDAR synaptic function in PFC neurons. These results suggest that the ketogenic diet provides a promising therapeutic strategy for social deficits in autism via the restoration of histone acetylation and gene expression in the brain.


Assuntos
Transtorno Autístico , Dieta Cetogênica , Animais , Modelos Animais de Doenças , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato
5.
Nat Commun ; 12(1): 6589, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782621

RESUMO

ASH1L, a histone methyltransferase, is identified as a top-ranking risk factor for autism spectrum disorder (ASD), however, little is known about the biological mechanisms underlying the link of ASH1L haploinsufficiency to ASD. Here we show that ASH1L expression and H3K4me3 level are significantly decreased in the prefrontal cortex (PFC) of postmortem tissues from ASD patients. Knockdown of Ash1L in PFC of juvenile mice induces the downregulation of risk genes associated with ASD, intellectual disability (ID) and epilepsy. These downregulated genes are enriched in excitatory and inhibitory synaptic function and have decreased H3K4me3 occupancy at their promoters. Furthermore, Ash1L deficiency in PFC causes the diminished GABAergic inhibition, enhanced glutamatergic transmission, and elevated PFC pyramidal neuronal excitability, which is associated with severe seizures and early mortality. Chemogenetic inhibition of PFC pyramidal neuronal activity, combined with the administration of GABA enhancer diazepam, rescues PFC synaptic imbalance and seizures, but not autistic social deficits or anxiety-like behaviors. These results have revealed the critical role of ASH1L in regulating synaptic gene expression and seizures, which provides insights into treatment strategies for ASH1L-associated brain diseases.


Assuntos
Transtorno Autístico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Córtex Pré-Frontal/metabolismo , Convulsões/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Encéfalo/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Homeostase , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/metabolismo , Fatores de Risco , Convulsões/fisiopatologia
6.
Mol Psychiatry ; 26(5): 1491-1504, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31455858

RESUMO

Cullin 3 (Cul3) gene, which encodes a core component of the E3 ubiquitin ligase complex that mediates proteasomal degradation, has been identified as a true high-risk factor for autism. Here, by combining behavioral, electrophysiological, and proteomic approaches, we have examined how Cul3 deficiency contributes to the etiology of different aspects of autism. Heterozygous mice with forebrain Cul3 deletion displayed autism-like social interaction impairment and sensory-gating deficiency. Region-specific deletion of Cul3 leads to distinct phenotypes, with social deficits linked to the loss of Cul3 in prefrontal cortex (PFC), and stereotypic behaviors linked to the loss of Cul3 in striatum. Correlated with these behavioral alterations, Cul3 deficiency in forebrain or PFC induces NMDA receptor hypofunction, while Cul3 loss in striatum causes a cell type-specific alteration of neuronal excitability in striatal circuits. Large-scale profiling has identified sets of misregulated proteins resulting from Cul3 deficiency in different regions, including Smyd3, a histone methyltransferase involved in gene transcription. Inhibition or knockdown of Smyd3 in forebrain Cul3-deficient mice ameliorates social deficits and restores NMDAR function in PFC. These results have revealed for the first time a potential molecular mechanism underlying the manifestation of different autism-like behavioral deficits by Cul3 deletion in cortico-striatal circuits.


Assuntos
Transtorno Autístico , Proteínas Culina/genética , Animais , Transtorno Autístico/genética , Proteínas Culina/metabolismo , Camundongos , Fenótipo , Proteômica , Receptores de N-Metil-D-Aspartato
7.
Cereb Cortex ; 30(8): 4402-4409, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32236403

RESUMO

Prefrontal cortex (PFC) is highly influenced by the inputs from ventral tegmental area (VTA); however, how the projection from VTA impacts PFC neurons and how the synaptically released dopamine affects PFC activity are largely unclear. Using optogenetics and electrophysiological approaches, we examined the impact of VTA stimulation on PFC principal neurons and parvalbumin-positive (PV+) interneurons and the modulatory role of dopamine. We found that the brief activation of the VTA-PFC circuit immediately induced action potential firing, which was mediated by glutamatergic transmission. However, strong stimulation of VTA gradually induced a marked and prolonged enhancement of the excitability of PFC PV+ interneurons and a modest and short-lived enhancement of the excitability of PFC principal neurons. Blocking dopamine receptors (DARs) shortened the VTA excitation of PFC PV+ interneurons and prolonged the VTA excitation of PFC principal neurons. Blocking GABAA receptors induced a similar effect as DAR antagonists in PFC principal neurons, suggesting that the dopaminergic effect is through influencing the inhibitory transmission system. These results have revealed a role of dopamine in regulating the temporal dynamics of excitation/inhibition balance in VTA-PFC circuit, which provides insights into the functional consequence of activating dopamine system in the mesocortical system.


Assuntos
Dopamina/metabolismo , Interneurônios/metabolismo , Vias Neurais/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Masculino , Optogenética , Ratos , Transmissão Sináptica/fisiologia
8.
Neurorehabil Neural Repair ; 33(12): 989-1002, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31524060

RESUMO

Despite negative association in cognition and memory, mice harboring Val66Met BDNF SNP (BDNFM/M) exhibit enhanced motor recovery accompanied by elevated excitatory synaptic markers VGLUT1 and VGLUT2 in striatum contralateral to unilateral ischemic stroke. The cortico-striatal pathway is a critical gateway for plasticity of motor/gait function. We hypothesized that enhanced excitability of the cortico-striatal pathway, especially of the contralateral hemisphere, underlies improved motor recovery. To test this hypothesis, we examined the key molecules involving excitatory synaptogenesis: Thrombospondins (TSP1/2) and their neuronal receptor α2δ-1. In WT brains, stroke induced expressions of TSP1/2-mRNA. The contralateral hemisphere of BDNFM/M mice showed heightened TSP2 and α2δ-1 mRNA and protein specifically at 6 months post-stroke. Immunoreactivities of TSPs and α2δ-1 were increased in cortical layers 1/2 of stroked BDNFM/M animals compared with BDNFM/M sham brains at this time. Areal densities of excitatory synapses in cortical layer 1 and striatum were also increased in stroked BDNFM/M brains, relative to stroked WT brains. Notably, the frequency of GABAergic synapses was greatly reduced along distal dendrites in cortical layer 1 in BDNFM/M brains, whether or not stroked, compared with WT brains. There was no effect of genotype or treatment on the density of GABAergic synapses onto striatal medium spiny neurons. The study identified molecular and synaptic substrates in the contralateral hemisphere of BDNFM/M mice, especially in cortical layers 1/2, which indicates selective region-related synaptic plasticity. The study suggests that an increase in excitatory-to-inhibitory synaptic balance along the contralateral cortico-striatal pathway underlies the enhanced functional recovery of BDNFM/M mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Acidente Vascular Cerebral/metabolismo , Sinapses/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Córtex Cerebral/ultraestrutura , Corpo Estriado/ultraestrutura , Excitabilidade Cortical , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único , Trombospondinas/metabolismo
9.
iScience ; 17: 24-35, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247448

RESUMO

Haploinsufficiency of the SHANK3 gene is causally linked to autism spectrum disorders (ASDs) in human genetic studies. Here we found that chemogenetic activation of pyramidal neurons in the prefrontal cortex (PFC) of Shank3-deficient mice with the hM3D (Gq) DREADD restored social preference behaviors and elevated glutamatergic synaptic function in PFC. Moreover, the expression of Sgk2 (serum- and glucocorticoid-inducible kinase 2), a member of the Sgk family, which plays a key role in regulating the membrane trafficking of glutamate receptors, was diminished by Shank3 deficiency and rescued by Gq DREADD activation of PFC. Blocking Sgk function in Shank3-deficient mice prevented Gq DREADD from rescuing social and synaptic deficits, whereas blocking Sgk function in wild-type mice led to the attenuation of PFC glutamatergic signaling and the induction of autism-like social deficits. These results have provided a potential circuit intervention and molecular target for autism treatment.

10.
J Neurosci ; 38(26): 5939-5948, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29853627

RESUMO

Microdeletion of the human 16p11.2 gene locus has been linked to autism spectrum disorder (ASD) and intellectual disability and confers risk for a number of other neurodevelopmental deficits. Transgenic mice carrying 16p11.2 deletion (16p11+/-) display phenotypes reminiscent of those in human patients with 16p11.2 deletion syndrome, but the molecular mechanisms and treatment strategies for these phenotypes remain unknown. In this study, we have found that both male and female 16p11+/- mice exhibit deficient NMDA receptor (NMDAR) function in the medial prefrontal cortex (mPFC), a brain region critical for high-level "executive" functions. Elevating the activity of mPFC pyramidal neurons with a CaMKII-driven Gq-DREADD (Gq-coupled designer receptors exclusively activated by designer drugs) led to the significant increase of NR2B subunit phosphorylation and the restoration of NMDAR function, as well as the amelioration of cognitive and social impairments in 16p11+/- mice. These results suggest that NMDAR hypofunction in PFC may contribute to the pathophysiology of 16p11.2 deletion syndrome and that restoring PFC activity is sufficient to rescue the behavioral deficits.SIGNIFICANCE STATEMENT The 16p11.2 deletion syndrome is strongly associated with autism spectrum disorder and intellectual disability. Using a mouse model carrying the 16p11.2 deletion, 16p11+/-, we identified NMDA receptor hypofunction in the prefrontal cortex (PFC). Elevating the activity of PFC pyramidal neurons with a chemogenetic tool, Gq-DREADD, led to the restoration of NMDA receptor function and the amelioration of cognitive and social impairments in 16p11+/- mice. These results have revealed a novel route for potential therapeutic intervention of 16p11.2 deletion syndrome.


Assuntos
Transtorno Autístico/metabolismo , Transtornos Cromossômicos/metabolismo , Deficiência Intelectual/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 16/metabolismo , Modelos Animais de Doenças , Feminino , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/fisiopatologia
11.
Nat Neurosci ; 21(8): 1139, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29872123

RESUMO

In the version of this article initially published, the blue diamonds in Fig. 2a-d were defined as Shank3+/Δc + saline; the correct definition is Shank3+/Δc + RMD. The error has been corrected in the HTML and PDF versions of the article.

12.
Neuropsychopharmacology ; 43(8): 1779-1788, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29760409

RESUMO

Autism is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors. Genetic screening has identified synaptic, transcriptional, and chromatin genes disrupted in autistic patients. Haploinsufficiency of Shank3, which encodes a scaffold protein at glutamatergic synapses, is causally linked to autism. Using a Shank3-deficient mouse model that exhibits prominent autism-like phenotypes, we have found that histone acetylation in the prefrontal cortex (PFC) is abnormally low, which can be reversed by MS-275 (also known as Entinostat, SNDX-275), a class I histone deacetylase (HDAC) inhibitor that is selectively potent in PFC. A brief (3-day) treatment with MS-275 (i.p.) led to the sustained (11 days) rescue of autistic social preference deficits in Shank3-deficient mice, without altering locomotion, motor coordination, anxiety, or the increased grooming. MS-275 treatment also rescued the diminished NMDAR surface expression and NMDAR function induced by Shank3 deficiency. Moreover, F-actin at synapses was restored and the transcription of actin regulators was elevated by MS-275 treatment of Shank3-deficient mice, which may contribute to the recovery of actin-based NMDAR synaptic delivery. Taken together, these results suggest that MS-275 treatment could normalize the aberrant epigenetic regulation of genes, leading to the amelioration of synaptic and social deficits associated with autism.


Assuntos
Transtorno Autístico/tratamento farmacológico , Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Piridinas/farmacologia , Comportamento Social , Sinapses/efeitos dos fármacos , Actinas/metabolismo , Animais , Transtorno Autístico/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Ratos , Sinapses/fisiologia
13.
Nat Neurosci ; 21(4): 564-575, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531362

RESUMO

Haploinsufficiency of the SHANK3 gene is causally linked to autism spectrum disorder (ASD), and ASD-associated genes are also enriched for chromatin remodelers. Here we found that brief treatment with romidepsin, a highly potent class I histone deacetylase (HDAC) inhibitor, alleviated social deficits in Shank3-deficient mice, which persisted for ~3 weeks. HDAC2 transcription was upregulated in these mice, and knockdown of HDAC2 in prefrontal cortex also rescued their social deficits. Nuclear localization of ß-catenin, a Shank3-binding protein that regulates cell adhesion and transcription, was increased in Shank3-deficient mice, which induced HDAC2 upregulation and social deficits. At the downstream molecular level, romidepsin treatment elevated the expression and histone acetylation of Grin2a and actin-regulatory genes and restored NMDA-receptor function and actin filaments in Shank3-deficient mice. Taken together, these findings highlight an epigenetic mechanism underlying social deficits linked to Shank3 deficiency, which may suggest potential therapeutic strategies for ASD patients bearing SHANK3 mutations.


Assuntos
Transtorno Autístico/complicações , Regulação da Expressão Gênica/genética , Histona Desacetilases/metabolismo , Proteínas do Tecido Nervoso/deficiência , Transtornos do Comportamento Social , Animais , Transtorno Autístico/genética , Depsipeptídeos/uso terapêutico , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Asseio Animal/efeitos dos fármacos , Asseio Animal/fisiologia , Inibidores de Histona Desacetilases/uso terapêutico , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/patologia , Desempenho Psicomotor/efeitos dos fármacos , Transtornos do Comportamento Social/enzimologia , Transtornos do Comportamento Social/etiologia , Transtornos do Comportamento Social/terapia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
14.
Cereb Cortex ; 28(6): 1980-1990, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28498919

RESUMO

Corticosteroid stress hormones exert a profound impact on cognitive and emotional processes. Understanding the neuronal circuits that are altered by chronic stress is important for counteracting the detrimental effects of stress in a brain region- and cell type-specific manner. Using the chemogenetic tool, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), which enables the remote, noninvasive and long-lasting modulation of cellular activity and signal transduction in discrete neuronal populations in vivo, we sought to identify the specific pathways that play an essential role in stress responses. We found that prolonged severe stress induced the diminished glutamatergic projection from pyramidal neurons in prefrontal cortex (PFC) to GABAergic interneurons in basolateral amygdala (BLA), leading to the loss of feedforward inhibition and ensuing hyperexcitability of BLA principal neurons, which caused a variety of behavioral abnormalities. Activating PFC pyramidal neurons with hM3D(Gq) DREADD restored the functional connection between PFC and BLA in stressed animals, resulting in the rescue of recognition memory, normalization of locomotor activity and reduction of aggressive behaviors. Inhibiting BLA principal neurons directly with hM4D(Gi) DREADD also blocked BLA hyperactivity and aggressive behaviors in stressed animals. These results have offered an effective avenue to counteract the stress-induced disruption of circuitry homeostasis.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Células Piramidais/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
15.
Neurobiol Dis ; 95: 194-203, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27475724

RESUMO

The human dopamine D4 receptor (hD4R) variants with long tandem repeats in the third intracellular loop have been strongly associated with attention deficit hyperactivity disorder (ADHD) and risk taking behaviors. To understand the potential molecular mechanism underlying the connection, we have investigated the synaptic function of human D4R polymorphism by virally expressing the ADHD-linked 7-repeat allele, hD4.7, or its normal counterpart, hD4.4, in the prefrontal cortex (PFC) of D4R knockout mice. We found that hD4R bound to the SH3 domain of PSD-95 in a state-dependent manner. Activation of hD4.7 caused more reduction of NR1/PSD-95 binding and NR1 surface expression than hD4.4 in PFC slices. Moreover, the NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSC) in PFC pyramidal neurons were suppressed to a larger extent by hD4.7 than hD4.4 activation. Direct stimulation of NMDARs with the partial agonist d-cycloserine prevented the NMDAR hypofunction induced by hD4.7 activation. Moreover, hD4.7-expressing mice exhibited the increased exploratory and novelty seeking behaviors, mimicking the phenotypic hallmark of human ADHD. d-cycloserine administration ameliorated the ADHD-like behaviors in hD4.7-expressing mice. Our results suggest that over-suppression of NMDAR function may underlie the role of hD4.7 in ADHD, and enhancing NMDAR signaling may be a viable therapeutic strategy to ADHD humans carrying the D4.7 allele.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Comportamento Exploratório/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D4/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Camundongos Knockout , Técnicas de Patch-Clamp/métodos , Células Piramidais/fisiologia , Transdução de Sinais/fisiologia
16.
Mol Neurobiol ; 53(10): 7137-7157, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26680419

RESUMO

The nanoscale three-dimensional structures of neurosynapses are unknown, and the neuroanatomical basis of epilepsy remains to be elucidated. Here, we studied the nanoscale three-dimensional synapses between hippocampal neurons, and membranous conjunctions between neurons were found with atomic force microscopy (AFM) and confirmed by transmission electron microscope (TEM), and their pathophysiological significance was primarily investigated. The neurons and dendrites were marked by MAP-2, axons by neurofilament 200, and synapses by synapsin I immunological staining. In the synapsin I-positive neurite ends of the neurons positively stained with MAP-2 and neurofilament 200, neurosynapses with various nanoscale morphology and structure could be found by AFM. The neurosynapses had typical three-dimensional structures of synaptic triplet including the presynaptic neurite end, synaptic cleft of 30 ∼ 40 in chemical synapses and 2 ∼ 6 nm in electrical ones, the postsynaptic neurite or dendrite spine, the typical neurite end button, the distinct pre- and postsynaptic membranes, and the obvious thickening of the postsynaptic membranes or neurites. Some membranous connections including membrane-like junctions (MLJ) and fiber-tube links (FTL) without triplet structures and cleft were found between neurons. The development frequencies of the two membranous conjunctions increased while those of the synaptic conjunctions decreased between the neurons from Otx1 knock-out mice in comparison with those between the neurons from normal mice. These results suggested that the neuroanatomical basis of Otx1 knock-out epilepsy is the combination of the decreased synaptic conjunctions and the increased membranous conjunctions.


Assuntos
Epilepsia/patologia , Hipocampo/patologia , Nanopartículas/ultraestrutura , Neurônios/ultraestrutura , Membranas Sinápticas/ultraestrutura , Animais , Células Cultivadas , Filamentos Intermediários/metabolismo , Camundongos Knockout , Microscopia de Força Atômica , Neuroglia/metabolismo , Ratos Wistar , Sinapsinas/metabolismo
17.
J Neurosci ; 35(45): 15113-26, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558782

RESUMO

Stroke is the world's leading cause of physiological disability, but there are currently no available agents that can be delivered early after stroke to enhance recovery. Daidzein, a soy isoflavone, is a clinically approved agent that has a neuroprotective effect in vitro, and it promotes axon growth in an animal model of optic nerve crush. The current study investigates the efficacy of daidzein on neuroprotection and functional recovery in a clinically relevant mouse model of stroke recovery. In light of the fact that cholesterols are essential lipid substrates in injury-induced synaptic remodeling, we found that daidzein enhanced the cholesterol homeostasis genetic program, including Lxr and downstream transporters, Apoe, Abca1, and Abcg1 genes in vitro. Daidzein also elevated the cholesterol homeostasis genes in the poststroke brain with Apoe, the highest expressing transporter, but did not affect infarct volume or hemispheric swelling. Despite the absence of neuroprotection, daidzein improved motor/gait function in chronic stroke and elevated synaptophysin expression. However, the daidzein-enhanced functional benefits and synaptophysin expression were abolished in Apoe-knock-out mice, suggesting the importance of daidzein-induced ApoE upregulation in fostering stroke recovery. Dissociation between daidzein-induced functional benefits and the absence of neuroprotection further suggest the presence of nonoverlapping mechanisms underlying recovery processes versus acute pathology. With its known safety in humans, early and chronic use of daidzein aimed at augmenting ApoE may serve as a novel, translatable strategy to promote functional recovery in stroke patients without adverse acute effect. SIGNIFICANCE STATEMENT: There have been recurring translational failures in treatment strategies for stroke. One underlying issue is the disparity in outcome analysis between animal and clinical studies. The former mainly depends on acute infarct size, whereas long-term functional recovery is an important outcome in patients. In an attempt to identify agents that promote functional recovery, we discovered that an FDA-approved soy isoflavone, daidzein, improved stroke-induced behavioral deficits via enhancing cholesterol homeostasis in chronic stroke, and this occurs without causing adverse effects in the acute phase. With its known safety in humans, the study suggests that the early and chronic use of daidzein serves as a potential strategy to promote functional recovery in stroke patients.


Assuntos
Apolipoproteínas E/fisiologia , Colesterol/fisiologia , Homeostase/efeitos dos fármacos , Isoflavonas/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Apolipoproteínas E/deficiência , Linhagem Celular Tumoral , Células Cultivadas , Doença Crônica , Inibidores do Crescimento/farmacologia , Inibidores do Crescimento/uso terapêutico , Homeostase/fisiologia , Humanos , Isoflavonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia
18.
Cell Rep ; 11(9): 1400-1413, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26027926

RESUMO

Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR) synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Transtorno Autístico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/fisiopatologia , Animais , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
J Neurosci ; 34(41): 13614-28, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297090

RESUMO

Degeneration of basal forebrain (BF) cholinergic neurons is one of the early pathological events in Alzheimer's disease (AD) and is thought to be responsible for the cholinergic and cognitive deficits in AD. The functions of this group of neurons are highly influenced by glutamatergic inputs from neocortex. We found that activation of metabotropic glutamate receptor 7 (mGluR7) decreased NMDAR-mediated currents and NR1 surface expression in rodent BF neurons via a mechanism involving cofilin-regulated actin dynamics. In BF cholinergic neurons, ß-amyloid (Aß) selectively impaired mGluR7 regulation of NMDARs by increasing p21-activated kinase activity and decreasing cofilin-mediated actin depolymerization through a p75(NTR)-dependent mechanism. Cell viability assays showed that activation of mGluR7 protected BF neurons from NMDA-induced excitotoxicity, which was selectively impaired by Aß in BF cholinergic neurons. It provides a potential basis for the Aß-induced disruption of calcium homeostasis that might contribute to the selective degeneration of BF cholinergic neurons in the early stage of AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , N-Metilaspartato/fisiologia , Neurônios/efeitos dos fármacos , Sistema Nervoso Parassimpático/patologia , Prosencéfalo/fisiologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Colina O-Acetiltransferase/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Prosencéfalo/citologia , Prosencéfalo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
20.
J Biol Chem ; 289(36): 25177-85, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25056951

RESUMO

The monoamine system in the prefrontal cortex has been implicated in various mental disorders and has been the major target of anxiolytics and antidepressants. Clinical studies show that serotonin and norepinephrine reuptake inhibitors (SNRIs) produce better therapeutic effects than single selective reuptake inhibitors, but the underlying mechanisms are largely unknown. Here, we found that low dose SNRIs, by acting on 5-HT(1A) and α2-adrenergic receptors, synergistically reduced AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents and AMPAR surface expression in prefrontal cortex pyramidal neurons via a mechanism involving Rab5/dynamin-mediated endocytosis of AMPARs. The synergistic effect of SNRIs on AMPARs was blocked by inhibition of activator of G protein signaling 3, a G protein modulator that prevents reassociation of G(i) protein α subunit and prolongs the ßγ-mediated signaling pathway. Moreover, the depression of AMPAR-mediated excitatory postsynaptic currents by SNRIs required p38 kinase activity, which was increased by 5-HT(1A) and α2-adrenergic receptor co-activation in an activator of G protein signaling 3-dependent manner. These results have revealed a potential mechanism for the synergy between the serotonin and norepinephrine systems in the regulation of glutamatergic transmission in cortical neurons.


Assuntos
Desipramina/farmacologia , Fluoxetina/farmacologia , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Inibidores da Captação Adrenérgica/farmacologia , Animais , Bicuculina , Western Blotting , Proteínas de Transporte/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de AMPA/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA