Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Commun ; 15(1): 4978, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862537

RESUMO

The electrical outputs of single-layer antiferromagnetic memory devices relying on the anisotropic magnetoresistance effect are typically rather small at room temperature. Here we report a new type of antiferromagnetic memory based on the spin phase change in a Mn-Ir binary intermetallic thin film at a composition within the phase boundary between its collinear and noncollinear phases. Via a small piezoelectric strain, the spin structure of this composition-boundary metal is reversibly interconverted, leading to a large nonvolatile room-temperature resistance modulation that is two orders of magnitude greater than the anisotropic magnetoresistance effect for a metal, mimicking the well-established phase change memory from a quantum spin degree of freedom. In addition, this antiferromagnetic spin phase change memory exhibits remarkable time and temperature stabilities, and is robust in a magnetic field high up to 60 T.

2.
Nano Lett ; 24(2): 584-591, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165127

RESUMO

Cu2S likely plays an important role in the sharp resistivity transition of LK-99. Nevertheless, this immediately arouses an intriguing question of whether the extraordinary room-temperature colossal magnetoresistance in the initial reports, which has been less focused, originates from Cu2S as well. To resolve this issue, we have systematically investigated the electrical transport and magnetotransport properties of near-stoichiometric Cu2S pellets and thin films. Neither Cu2S nor LK-99 containing Cu2S in this study was found to exhibit the remarkable magnetoresistance effect implied by Lee et al. This implies that Cu2S could not account for all of the intriguing transport properties of the initially reported LK-99, and the initially reported LK-99 samples might contain magnetic impurities. Moreover, based on the crystal-structure-sensitive electrical properties of Cu2S, we have constructed a piezoelectric-strain-controlled device and obtained a giant and reversible resistance modulation of 2 orders of magnitude at room temperature, yielding a huge gauge factor of 160,000.

3.
Adv Mater ; 36(14): e2310379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183310

RESUMO

Antiferromagnets constitute promising contender materials for next-generation spintronic devices with superior stability, scalability, and dynamics. Nevertheless, the perception of well-established ferromagnetic spintronics underpinned by spontaneous magnetization seemed to indicate the inadequacy of antiferromagnets for spintronics-their compensated magnetization has been perceived to result in uncontrollable antiferromagnetic order and subtle magnetoelectronic responses. However, remarkable advancements have been achieved in antiferromagnetic spintronics in recent years, with consecutive unanticipated discoveries substantiating the feasibility of antiferromagnet-centered spintronic devices. It is emphasized that, distinct from ferromagnets, the richness in complex antiferromagnetic crystal structures is the unique and essential virtue of antiferromagnets that can open up their endless possibilities of novel phenomena and functionality for spintronics. In this Perspective, the recent progress in antiferromagnetic spintronics is reviewed, with a particular focus on that based on several kinds of antiferromagnets with special antiferromagnetic crystal structures. The latest developments in efficiently manipulating antiferromagnetic order, exploring novel antiferromagnetic physical responses, and demonstrating prototype antiferromagnetic spintronic devices are discussed. An outlook on future research directions is also provided. It is hoped that this Perspective can serve as guidance for readers who are interested in this field and encourage unprecedented studies on antiferromagnetic spintronic materials, phenomena, and devices.

4.
Quant Imaging Med Surg ; 13(9): 5887-5901, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37711836

RESUMO

Background: Microvascular invasion (MVI) is an independent risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). However, MVI cannot be detected by conventional imaging. To localize MVI precisely on magnetic resonance (MR) images, we evaluated the feasibility and accuracy of 3-dimensional (3D) histology-MR image fusion of the liver. Methods: Animal models of VX2 liver tumors were established in 10 New Zealand white rabbits under ultrasonographic guidance. The whole liver lobe containing the VX2 tumor was extracted and divided into 4 specimens, for a total of 40 specimens. MR images were obtained with a T2-weighted sequence for each specimen, and then histological images were obtained by intermittent, serial pathological sections. 3D histology-MR image fusion was performed via landmark registration in 3D Slicer software. We calculated the success rate and registration errors of image fusion, and then we located the MVI on MR images. Regarding influencing factors, we evaluated the uniformity of tissue thickness after sampling and the uniformity of tissue shrinkage after dehydration. Results: The VX2 liver tumor model was successfully established in the 10 rabbits. The incidence of MVI was 80% (8/10). 3D histology-MR image fusion was successfully performed in the 39 specimens, and the success rate was 97.5% (39/40). The average registration error was 0.44±0.15 mm. MVI was detected in 20 of the 39 successfully registered specimens, resulting in a total of 166 MVI lesions. The specific location of all MVI lesions was accurately identified on MR images using 3D histology-MR image fusion. All MVI lesions showed as slightly hyperintense on the high-resolution MR T2-weighted images. The results of the influencing factor assessment showed that the tissue thickness was uniform after sampling (P=0.38), but the rates of the tissue shrinkage was inconsistent after dehydration (P<0.001). Conclusions: 3D histology-MR image fusion of the isolated liver tumor model is feasible and accurate and allows for the successful identification of the specific location of MVI on MR images.

5.
Am J Emerg Med ; 72: 34-38, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478635

RESUMO

PURPOSE: This study compares the results of Artificial Intelligence (AI) diagnosis of rib fractures using initial CT and follow-up CT as the final diagnostic criteria, and studies AI-assisted diagnosis in improving the detection rate of rib fractures. METHODS: A retrospective study was conducted on 113 patients who underwent initial and follow-up CT scans due to trauma. The initial and follow-up CT were used as diagnostic criteria, respectively. All images were transmitted to the AI software (V2.1.0, Huiying Medical Technology Co., Beijing, China) for rib fracture detection. The radiologist group (Group 1), AI group (Group 2), and Radiologist with AI group (Group 3) reviewed CT images at an interval of one month, recorded and compared the differences in the sensitivity and specificity for diagnosing rib fractures. RESULTS: 589 and 712 rib fractures were diagnosed by the initial and follow-up CT, respectively. The initial CT diagnosis failed to detect 127 rib fractures, resulting in a missed rate of 17.84%. In addition, four normal ribs were mistakenly identified as being fractured. The follow-up CT was regarded as the diagnostic standard for rib fractures. The sensitivity and specificity were 82.16% and 99.80% for Group 1, 79.35% and 84.90% for Group 2, and 91.57% and 99.70% for Group 3. The sensitivity of Group 3 was higher than that of Group 1 and Group 2 (p < 0.05). The specificity was lower for Group 2 compared with Group 1 and Group 3 (p < 0.05). CONCLUSION: AI-assisted diagnosis improved the detection rate of rib fractures, the follow-up CT should be used for the diagnosis standard of rib fractures, and AI misdiagnoses can be greatly reduced when a radiologist reviews the diagnosis.


Assuntos
Fraturas das Costelas , Humanos , Fraturas das Costelas/diagnóstico por imagem , Inteligência Artificial , Estudos Retrospectivos , Seguimentos , Tomografia Computadorizada por Raios X/métodos , Sensibilidade e Especificidade
7.
Front Neurosci ; 17: 1104212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860618

RESUMO

The carotid web is commonly found in the carotid bulb or the beginning of the internal carotid artery. It presents as a thin layer of proliferative intimal tissue originating from the arterial wall and extending into the vessel lumen. A large body of research has proven that the carotid web is a risk factor for ischemic stroke. This review summarizes the current research status of the carotid web and focuses on its imaging presentation.

8.
ACS Appl Mater Interfaces ; 15(5): 7572-7577, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700918

RESUMO

Since the large room-temperature anomalous Hall effect was discovered in noncollinear antiferromagnets, Mn3Sn has received immense research interest as it exhibits abundant exotic physical properties including Weyl points and enormous potential for antiferromagnetic spintronic device applications. In this work, we report the emergence of the topological Hall effect in Mn3Sn films grown on Si that is the workhorse for the modern highly integrated information technology. Importantly, through a series of systematic comparative experiments, the intriguing topological Hall effect phenomenon related to the appearance of the noncoplanar chiral spin structure is found to be induced by the Mn3Sn/SiO2 interface. Furthermore, it was found that the current injection to a Pt/Mn3Sn bilayer Hall bar device can effectively manipulate the chiral spin structure of Mn3Sn, which demonstrates the feasibility of Si-based noncollinear antiferromagnetic spintronics.

9.
Nature ; 613(7944): 485-489, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653565

RESUMO

Antiferromagnetic spintronics1-16 is a rapidly growing field in condensed-matter physics and information technology with potential applications for high-density and ultrafast information devices. However, the practical application of these devices has been largely limited by small electrical outputs at room temperature. Here we describe a room-temperature exchange-bias effect between a collinear antiferromagnet, MnPt, and a non-collinear antiferromagnet, Mn3Pt, which together are similar to a ferromagnet-antiferromagnet exchange-bias system. We use this exotic effect to build all-antiferromagnetic tunnel junctions with large nonvolatile room-temperature magnetoresistance values that reach a maximum of about 100%. Atomistic spin dynamics simulations reveal that uncompensated localized spins at the interface of MnPt produce the exchange bias. First-principles calculations indicate that the remarkable tunnelling magnetoresistance originates from the spin polarization of Mn3Pt in the momentum space. All-antiferromagnetic tunnel junction devices, with nearly vanishing stray fields and strongly enhanced spin dynamics up to the terahertz level, could be important for next-generation highly integrated and ultrafast memory devices7,9,16.

10.
11.
Adv Mater ; 34(24): e2200487, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35393740

RESUMO

The discovery of the anomalous Hall effect in noncollinear antiferromagnetic metals represents one of the most important breakthroughs for the emergent antiferromagnetic spintronics. The tuning of chemical potential has been an important theoretical approach to varying the anomalous Hall conductivity, but the direct experimental demonstration has been challenging owing to the large carrier density of metals. In this work, an ultrathin noncollinear antiferromagnetic Mn3 Ge film is fabricated and its carrier density is modulated by ionic liquid gating. Via a small voltage of ≈3 V, its carrier density is altered by ≈90% and, accordingly, the anomalous Hall effect is completely switched off. This work thus creates an attractive new way to steering the anomalous Hall effect in noncollinear antiferromagnets.

12.
Adv Mater ; 34(4): e2106117, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34706110

RESUMO

Due to the lack of any magnetic order down to 1.7 K in the parent bulk compound NdNiO2 , the recently discovered 9-15 K superconductivity in the infinite-layer Nd0.8 Sr0.2 NiO2 thin films has provided an exciting playground for unearthing new superconductivity mechanisms. Herein, the successful synthesis of a series of superconducting Nd0.8 Sr0.2 NiO2 thin films ranging from 8 to 40 nm is reported. The large exchange bias effect is observed between the superconducting Nd0.8 Sr0.2 NiO2 films and a thin ferromagnetic layer, which suggests the existence of the antiferromagnetic order. Furthermore, the existence of the antiferromagnetic order is evidenced by X-ray magnetic linear dichroism measurements. These experimental results are fundamentally critical for the current field.

14.
Quant Imaging Med Surg ; 11(8): 3629-3642, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341737

RESUMO

BACKGROUND: Artificial intelligence (AI) products have been widely used for the clinical detection of primary lung tumors. However, their performance and accuracy in risk prediction for metastases or benign lesions remain underexplored. This study evaluated the accuracy of an AI-driven commercial computer-aided detection (CAD) product (InferRead CT Lung Research, ICLR) in malignancy risk prediction using a real-world database. METHODS: This retrospective study assessed 486 consecutive resected lung lesions, including 320 adenocarcinomas, 40 other malignancies, 55 metastases, and 71 benign lesions, from September 2015 to November 2018. The malignancy risk probability of each lesion was obtained using the ICLR software based on a 3D convolutional neural network (CNN) with DenseNet architecture as a backbone (without clinical data). Two resident doctors independently graded each lesion using patient clinical history. One doctor (R1) has 3 years of chest radiology experience, and the other doctor (R2) has 3 years of general radiology experience. Cochran's Q test was used to assess the performances of the AI compared to the radiologists. RESULTS: The accuracy of malignancy-risk prediction using the ICLR for adenocarcinomas, other malignancies, metastases, and benign lesions was 93.4% (299/320), 95.0% (38/40), 50.9% (28/55), and 40.8% (29/71), respectively. The accuracy was significantly higher in adenocarcinomas and other malignancies compared to metastases and benign lesions (all P<0.05). The overall accuracy of risk prediction for R1 was 93.6% (455/486) and 87.4% for R2 (425/486), both of which were higher than the 81.1% accuracy obtained with the ICLR (394/486) (R1 vs. ICLR: P<0.001; R2 vs. ICLR: P=0.001), especially in assessing the risk of metastases (P<0.05). R1 performed better than R2 at risk prediction (P=0.001). CONCLUSIONS: The accuracy of the ICLR for risk prediction is very high for primary lung cancers but poor for metastases and benign lesions.

15.
Clin Imaging ; 78: 223-229, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34058647

RESUMO

PURPOSE: To evaluate whether the extent of COVID-19 pneumonia on CT scans using quantitative CT imaging obtained early in the illness can predict its future severity. METHODS: We conducted a retrospective single-center study on confirmed COVID-19 patients between January 18, 2020 and March 5, 2020. A quantitative AI algorithm was used to evaluate each patient's CT scan to determine the proportion of the lungs with pneumonia (VR) and the rate of change (RAR) in VR from scan to scan. Patients were classified as being in the severe or non-severe group based on their final symptoms. Penalized B-splines regression modeling was used to examine the relationship between mean VR and days from onset of symptoms in the two groups, with 95% and 99% confidence intervals. RESULTS: Median VR max was 18.6% (IQR 9.1-32.7%) in 21 patients in the severe group, significantly higher (P < 0.0001) than in the 53 patients in non-severe group (1.8% (IQR 0.4-5.7%)). RAR was increasing with a median RAR of 2.1% (IQR 0.4-5.5%) in severe and 0.4% (IQR 0.1-0.9%) in non-severe group, which was significantly different (P < 0.0001). Penalized B-spline analyses showed positive relationships between VR and days from onset of symptom. The 95% confidence limits of the predicted means for the two groups diverged 5 days after the onset of initial symptoms with a threshold of 11.9%. CONCLUSION: Five days after the initial onset of symptoms, CT could predict the patients who later developed severe symptoms with 95% confidence.


Assuntos
COVID-19 , Humanos , Pulmão , Estudos Retrospectivos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
16.
Nat Commun ; 12(1): 809, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547287

RESUMO

The discovery of ferromagnetic two-dimensional van der Waals materials has opened up opportunities to explore intriguing physics and to develop innovative spintronic devices. However, controllable synthesis of these 2D ferromagnets and enhancing their stability under ambient conditions remain challenging. Here, we report chemical vapor deposition growth of air-stable 2D metallic 1T-CrTe2 ultrathin crystals with controlled thickness. Their long-range ferromagnetic ordering is confirmed by a robust anomalous Hall effect, which has seldom been observed in other layered 2D materials grown by chemical vapor deposition. With reducing the thickness of 1T-CrTe2 from tens of nanometers to several nanometers, the easy axis changes from in-plane to out-of-plane. Monotonic increase of Curie temperature with the thickness decreasing from ~130.0 to ~7.6 nm is observed. Theoretical calculations indicate that the weakening of the Coulomb screening in the two-dimensional limit plays a crucial role in the change of magnetic properties.

17.
J Magn Reson Imaging ; 54(2): 421-428, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33590944

RESUMO

BACKGROUND: Myocardial injury has been found using magnetic resonance imaging in recovered coronavirus disease 2019 (COVID-19) patients unselected or with ongoing cardiac symptoms. PURPOSE: To evaluate for the presence of myocardial involvement in recovered COVID-19 patients without cardiovascular symptoms and abnormal serologic markers during hospitalization. STUDY TYPE: Prospective. POPULATION: Twenty-one recovered COVID-19 patients and 20 healthy controls (HC). FIELD STRENGTH/SEQUENCE: 3.0 T, cine, T2-weighted imaging, T1 mapping, and T2 mapping. ASSESSMENT: Cardiac ventricular function includes end-diastolic volume, end-systolic volume, stroke volume, cardiac output, left ventricle (LV) mass, and ejection fraction (EF) of LV and right ventricle (RV), and segmental myocardial T1 and T2 values were measured. STATISTICAL TESTS: Student's t-test, univariate general linear model test, and chi-square test were used for analyses between two groups. Ordinary one-way analyses of variance or Kruskal-Wallis H test were used for analyses between three groups, followed by post-hoc analyses. RESULTS: Fifteen (71.43%) COVID-19 patients had abnormal magnetic resonance findings, including raised myocardial native T1 (5, 23.81%) and T2 values (10, 47.62%), decreased LVEF (1, 4.76%), and RVEF (2, 9.52%). The segmental myocardial T2 value of COVID-19 patients (49.20 [46.1, 54.6] msec) was significantly higher than HC (48.3 [45.2, 51.7] msec) (P < 0.001), while the myocardial native T1 value showed no significant difference between COVID-19 patients and HC. The myocardial T2 value of serious COVID-19 patients (52.5 [48.1, 57.1] msec) was significantly higher than unserious COVID-19 patients (48.8 [45.9, 53.8] msec) and HC (48.3 [45.2, 51.7]) (P < 0.001). COVID-19 patients with abnormally elevated D-dimer, C-reactive protein, or lymphopenia showed higher myocardial T2 values than without (all P < 0.05). DATA CONCLUSION: Cardiac involvement was observed in recovered COVID-19 patients with no preexisting cardiovascular disease, no cardiovascular symptoms, and elevated serologic markers of myocardial injury during the whole course of COVID-19. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 5.


Assuntos
COVID-19 , Coração , Humanos , Imagem Cinética por Ressonância Magnética , Miocárdio , Valor Preditivo dos Testes , Estudos Prospectivos , SARS-CoV-2 , Volume Sistólico , Função Ventricular Esquerda
18.
Adv Mater ; 32(26): e2002300, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449568

RESUMO

One of the main bottleneck issues for room-temperature antiferromagnetic spintronic devices is the small signal read-out owing to the limited anisotropic magnetoresistance in antiferromagnets. However, this could be overcome by either utilizing the Berry-curvature-induced anomalous Hall resistance in noncollinear antiferromagnets or establishing tunnel-junction devices based on effective manipulation of antiferromagnetic spins. In this work, the giant piezoelectric strain modulation of the spin structure and the anomalous Hall resistance in a noncollinear antiferromagnetic metal-D019 hexagonal Mn3 Ga-is demonstrated. Furthermore, tunnel-junction devices are built with a diameter of 200 nm to amplify the maximum tunneling resistance ratio to more than 10% at room-temperature, which thus implies significant potential of noncollinear antiferromagnets for large signal-output and high-density antiferromagnetic spintronic device applications.

19.
ACS Nano ; 14(5): 6242-6248, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32298083

RESUMO

We report the successful fabrication of noncollinear antiferromagnetic D019 Mn3Ge thin films on insulating oxide substrates. The anomalous Hall effect and the large parallel negative magnetoresistance that is robust up to 53 T are observed in the thin films, which may provide evidence for the recent theoretical prediction of the existence of Weyl fermions in antiferromagnetic Mn3Ge. More importantly, we integrate the Mn3Ge thin films onto ferroelectric PMN-PT substrates and manipulate the longitudinal resistance reversibly by electric fields at room temperature, demonstrating the anisotropic magnetoresistance effect in noncollinear antiferromagnets, which thus illustrates the potential of antiferromagnetic Mn3Ge for information storage applications.

20.
Eur Radiol ; 30(8): 4407-4416, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32215691

RESUMO

OBJECTIVES: To explore the relationship between the imaging manifestations and clinical classification of COVID-19. METHODS: We conducted a retrospective single-center study on patients with COVID-19 from Jan. 18, 2020 to Feb. 7, 2020 in Zhuhai, China. Patients were divided into 3 types based on Chinese guideline: mild (patients with minimal symptoms and negative CT findings), common, and severe-critical (patients with positive CT findings and different extent of clinical manifestations). CT visual quantitative evaluation was based on summing up the acute lung inflammatory lesions involving each lobe, which was scored as 0 (0%), 1 (1-25%), 2 (26-50%), 3 (51-75%), or 4 (76-100%), respectively. The total severity score (TSS) was reached by summing the five lobe scores. The consistency of two observers was evaluated. The TSS was compared with the clinical classification. ROC was used to test the diagnosis ability of TSS for severe-critical type. RESULTS: This study included 78 patients, 38 males and 40 females. There were 24 mild (30.8%), 46 common (59.0%), and 8 severe-critical (10.2%) cases, respectively. The median TSS of severe-critical-type group was significantly higher than common type (p < 0.001). The ICC value of the two observers was 0.976 (95% CI 0.962-0.985). ROC analysis showed the area under the curve (AUC) of TSS for diagnosing severe-critical type was 0.918. The TSS cutoff of 7.5 had 82.6% sensitivity and 100% specificity. CONCLUSIONS: The proportion of clinical mild-type patients with COVID-19 was relatively high; CT was not suitable for independent screening tool. The CT visual quantitative analysis has high consistency and can reflect the clinical classification of COVID-19. KEY POINTS: • CT visual quantitative evaluation has high consistency (ICC value of 0.976) among the observers. The median TSS of severe-critical type group was significantly higher than common type (p < 0.001). • ROC analysis showed the area under the curve (AUC) of TSS for diagnosing severe-critical type was 0.918 (95% CI 0.843-0.994). The TSS cutoff of 7.5 had 82.6% sensitivity and 100% specificity. • The proportion of confirmed COVID-19 patients with normal chest CT was relatively high (30.8%); CT was not a suitable screening modality.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Curva ROC , Estudos Retrospectivos , SARS-CoV-2 , Tórax , Tomografia Computadorizada por Raios X/métodos , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA