Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410251, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973470

RESUMO

Considering the substantial role of ammonia, developing highly efficient electrocatalysts for nitrate-to-ammonia conversion has attracted increasing interest. Herein, we proposed a feasible strategy of p-d orbital hybridization via doping p-block metals in an Ag host, which drastically promotes the performance of nitrate adsorption and disassociation. Typically, a Sn-doped Ag catalyst (SnAg) delivers a maximum Faradaic efficiency (FE) of 95.5 ± 1.85 % for NH3 at -0.4 V vs. RHE and reaches the highest NH3 yield rate to 482.3 ± 14.1 mg h-1 mgcat.-1. In a flow cell, the SnAg catalyst achieves a FE of 90.2 % at an ampere-level current density of 1.1 A cm-2 with an NH3 yield of 78.6 mg h-1 cm-2, during which NH3 can be further extracted to prepare struvite as high-quality fertilizer. A mechanistic study reveals that a strong p-d orbital hybridization effect in SnAg is beneficial for nitrite deoxygenation, a rate-determining step for NH3 synthesis, which as a general principle, can be further extended to Bi- and In-doped Ag catalysts. Moreover, when integrated into a Zn-nitrate battery, such a SnAg cathode contributes to a superior energy density of 639 Wh L-1, high power density of 18.1 mW cm-2, and continuous NH3 production.

2.
Angew Chem Int Ed Engl ; : e202409206, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975661

RESUMO

Regulating competitive reaction pathways to direct the selectivity of electrochemical CO2 reduction reaction toward a desired product is crucial but remains challenging. Herein, switching product from HCOOH to CO is achieved by incorporating Sb element into the CuS, in which the Cu-S ionic bond is coupled with S-Sb covalent bond through bridging S atoms that elongates the Cu-S bond from 2.24 Å to 2.30 Å. Consequently, CuS with a shorter Cu-S bond exhibited a high selectivity for producing HCOOH, with a maximum Faradaic efficiency (FE) of 72%. Conversely, Cu3SbS4 characterized by an elongated Cu-S bond exhibited the most pronounced production of CO with a maximum FE of 60%. In situ spectroscopy combined with density functional theory calculations revealed that the altered Cu‒S bond length and local coordination environment make the *HCOO binding energy weaker on Cu3SbS4 compared to that on CuS. Notably, a volcano-shaped correlation between the Cu-S bond length and adsorption strength of *COOH indicates that Cu-S in Cu3SbS4 as double-active sites facilitates the adsorption of *COOH, and thus results in the high selectivity of Cu3SbS4 toward CO.

3.
Front Vet Sci ; 11: 1405355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036798

RESUMO

Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep.Inner Mongolia Cashmere Goat is a local excellent breed of cashmere and meat dual-purpose, which is a typical heterogeneous indumentum. The hair follicles cycle through periods of vigorous growth (anagen), a regression caused by apoptosis (catagen), and relative rest (telogen). At present, it is not clear which genes affect the cycle transformation of hair follicles and unclear how proteins impact the creation and expansion of hair follicles.we using multi-omics joint analysis methodologies to investigated the possible pathways of transformation and apoptosis in goat hair follicles. The results showed that 917,1,187, and 716 proteins were specifically expressed in anagen, catagen andtelogen. The result of gene ontology (GO) annotation showed that differentially expressed proteins (DEPs) are in different growth cycle periods, and enriched GO items are mostly related to the transformation of cells and proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment result indicated that the apoptosis process has a great impact on hair follicle's growth cycle. The results of the protein interaction network of differential proteins showed that the ribosomal protein family (RPL4, RPL8, RPS16, RPS18, RPS2, RPS27A, RPS3) was the core protein in the network. The results of combined transcriptome and proteomics analysis showed that there were 16,34, and 26 overlapped DEGs and DEPs in the comparison of anagen VS catagen, catagen VS telogen and anagen VS telogen, of which API5 plays an important role in regulating protein and gene expression levels. We focused on API5 and Ribosomal protein and found that API5 affected the apoptosis process of hair follicles, and ribosomal protein was highly expressed in the resting stage of hair follicles. They are both useful as molecular marker candidate genes to study hair follicle growth and apoptosis,and they both have an essential function in the cycle transition process of hair follicles. The results of this study may provide a theoretical basis for further research on the growth and development of hair follicles in Inner Mongolian Cashmere goats.

4.
J Am Chem Soc ; 146(27): 18743-18752, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38916520

RESUMO

Alkali ions, major components at the electrode-electrolyte interface, are crucial to modulating reaction activity and selectivity of catalyst materials. However, the underlying mechanism of how the alkali ions catalyze the N2 reduction reaction (NRR) into ammonia remains elusive, posing challenges for experimentalists to select appropriate electrolyte solutions. In this work, by employing a combined experimental and computational approach, we proposed four essential roles of cation ions at Fe electrodes for N2 fixation: (i) promoting NN bond cleavage; (ii) stabilizing NRR intermediates; (iii) suppressing the competing hydrogen evolution reaction (HER); and (iv) modulating the interfacial charge distribution at the electrode-electrolyte interface. For N2 adsorption on an Fe electrode with cation ions, our constrained ab initio molecular dynamic (c-AIMD) results demonstrate a barrierless process, while an extra 0.52 eV barrier requires to be overcome to adsorb N2 for the pure Fe-water interface. For the formation of *NNH species within the N2 reduction process, the calculated free energy barrier is 0.50 eV at the Li+-Fe-water interface. However, the calculated barrier reaches 0.81 eV in pure Fe-water interface. Furthermore, experiments demonstrate a high Faradaic efficiency for ammonia synthesis on a Li+-Fe-water interface, reaching 27.93% at a working potential of -0.3 V vs RHE and pH = 6.8. These results emphasize how alkali metal cations and local reaction environments on the electrode surface play crucial roles in influencing the kinetics of interfacial reactions.

5.
ACS Nano ; 18(21): 13745-13754, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739489

RESUMO

The quest for sustainable urea production has directed attention toward electrocatalytic methods that bypass the energy-intensive traditional Haber-Bosch process. This study introduces an approach to urea synthesis through the coreduction of CO2 and NO3- using copper-doped molybdenum diselenide (Cu-MoSe2) with Cu-Mo dual sites as electrocatalysts. The electrocatalytic activity of the Cu-MoSe2 electrode is characterized by a urea yield rate of 1235 µg h-1 mgcat.-1 at -0.7 V versus the reversible hydrogen electrode and a maximum Faradaic efficiency of 23.43% at -0.6 V versus RHE. Besides, a continuous urea production with an enhanced average yield rate of 9145 µg h-1 mgcat.-1 can be achieved in a flow cell. These figures represent a substantial advancement over that of the baseline MoSe2 electrode. Density functional theory (DFT) calculations elucidate that Cu doping accelerates *NO2 deoxygenation and significantly decreases the energy barriers for C-N bond formation. Consequently, Cu-MoSe2 demonstrates a more favorable pathway for urea production, enhancing both the efficiency and feasibility of the process. This study offers valuable insights into electrode design and understanding of the facilitated electrochemical pathways.

6.
Front Vet Sci ; 11: 1382897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756519

RESUMO

Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep. In this study, high-resolution resequencing data from four sheep breeds (Dorper sheep, Suffolk sheep, Ouessant sheep, and Shetland sheep) were analyzed. The nonsynonymous single nucleotide polymorphisms of three candidate genes (KIAA1217, SNTA1, and LTBP1) were also genotyped in 642 healthy Ujumqin sheep using MALDI-TOFMS and the genotyping results were associated with growth traits. The results showed that different genotypes of the KIAA1217 g.24429511T>C locus had significant effects on the chest circumferences of Ujumqin sheep. The SNTA1 g.62222626C>A locus had different effects on the chest depths, shoulder widths and rump widths of Ujumqin sheep. This study showed that these two sites can be used for marker-assisted selection, which will be beneficial for future precision molecular breeding.

7.
Appl Opt ; 63(7): 1719-1726, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437271

RESUMO

On-chip acousto-optic modulators that operate at an optical wavelength of 780 nm and a microwave frequency of 6.835 GHz are proposed. The modulators are based on a lithium-niobate-on-sapphire platform and efficiently excite surface acoustic waves and exhibit strong interactions with tightly confined optical modes in waveguides. In particular, a high-efficiency phase modulator and single-sideband mode converter are designed. We found that for both microwave and optical wavelengths below 1 µm, the interactions at the cross-sections of photonic waveguides are sensitive to the waveguide width and are significantly different from those in previous studies. Our designed devices have small footprints and high efficiencies, making them suitable for controlling rubidium atoms and realizing hybrid photonic-atomic chips. Furthermore, our devices have the potential to extend the acousto-optic modulators to other visible wavelengths for other atom transitions and for visible light applications, including imaging and sensing.

8.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
9.
Hemoglobin ; 48(2): 121-124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450437

RESUMO

We report a new δ-chain hemoglobin (Hb) variant observed in a 5-year-old female living in Yulin, Guangxi, China. Capillary electrophoresis revealed splitting of the Hb A2 peak into two fractions (Hb A2 and Hb A2 variant), and the Hb A2 variant was also detected by high-performance liquid chromatography. However, it could not be detected using matrix-assisted laser desorption lonization-time of flight mass spectrometry. CD41-42 (-TCTT) heterozygosity was observed on the HBB gene by PCR and reverse dot-blot hybridization. Sanger sequencing showed a new transition (G > A) at codon 46 of the HBD gene, resulting in glycine changing to arginine. Based on the patient's place of residence, the new variant was named Hb A2-Yulin [δ46(CD5)Gly→Arg,HBD:c.139G > A].


Assuntos
Hemoglobina A2 , Hemoglobinas Anormais , Globinas delta , Humanos , Feminino , Globinas delta/genética , Pré-Escolar , Hemoglobinas Anormais/genética , Hemoglobina A2/genética , Substituição de Aminoácidos , China
10.
Small ; 20(29): e2311172, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38351480

RESUMO

Ruthenium oxide is currently considered as the promising alternative to Ir-based catalysts employed for proton exchange membrane water electrolyzers but still faces the bottlenecks of limited durability and slow kinetics. Herein, a 2D amorphous/crystalline heterophase ac-Cr0.53Ru0.47O2-δ substitutional solid solution with pervasive grain boundaries (GBs) is developed to accelerate the kinetics of acidic oxygen evolution reaction (OER) and extend the long-term stability simultaneously. The ac-Cr0.53Ru0.47O2-δ shows a super stability with a slow degradation rate and a remarkable mass activity of 455 A gRu -1 at 1.6 V vs RHE, which is ≈3.6- and 5.9-fold higher than those of synthesized RuO2 and commercial RuO2, respectively. The strong interaction of Cr-O-Ru local units in synergy with the specific 2D structural characteristics of ac-Cr0.53Ru0.47O2-δ dominates its enhanced stability. Meanwhile, high-density GBs and the shortened Ru-O bonds tailored by amorphous/crystalline structure and Cr-O-Ru interaction regulate the adsorption and desorption rates of oxygen intermediates, thus accelerating the overall acidic OER kinetics.

11.
Redox Biol ; 70: 103056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290383

RESUMO

BACKGROUND: Nur77 belongs to the member of orphan nuclear receptor 4A family that plays critical roles in maintaining vascular homeostasis. This study aims to determine whether Nur77 plays a role in attenuating vascular dysfunction, and if so, to determine the molecular mechanisms involved. METHODS: Both Nur77 knockout (Nur77 KO) and Nur77 endothelial specific transgenic mice (Nur77-Tg) were employed to examine the functional significance of Nur77 in vascular endothelium in vivo. Endothelium-dependent vasodilatation to acetylcholine (Ach) and reactive oxygen species (ROS) production was determined under inflammatory and high glucose conditions. Expression of genes was determined by real-time PCR and western blot analysis. RESULTS: In response to tumor necrosis factor alpha (TNF-α) treatment and diabetes, the endothelium-dependent vasodilatation to Ach was significantly impaired in aorta from Nur77 KO as compared with those from the wild-type (WT) mice. Endothelial specific overexpression of Nur77 markedly prevented both TNF-α- and high glucose-induced endothelial dysfunction. Compared with WT mice, after TNF-α and high glucose treatment, ROS production in aorta was significantly increased in Nur77 KO mice, but it was inhibited in Nur77-Tg mice, as determined by dihydroethidium (DHE) staining. Furthermore, we demonstrated that Nur77 overexpression substantially increased the expression of several key enzymes involved in nitric oxide (NO) production and ROS scavenging, including endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GCH-1), glutathione peroxidase-1 (GPx-1), and superoxide dismutases (SODs). Mechanistically, we found that Nur77 increased GCH1 mRNA stability by inhibiting the expression of microRNA-133a, while Nur77 upregulated SOD1 expression through directly binding to the human SOD1 promoter in vascular endothelial cells. CONCLUSION: Our results suggest that Nur77 plays an essential role in attenuating endothelial dysfunction through activating NO production and anti-oxidant pathways in vascular endothelium. Targeted activation of Nur77 may provide a novel therapeutic approach for the treatment of cardiovascular diseases associated with endothelial dysfunction.


Assuntos
Antioxidantes , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Doenças Vasculares , Animais , Humanos , Camundongos , Antioxidantes/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glucose/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
12.
Phytochem Anal ; 35(1): 146-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731278

RESUMO

INTRODUCTION: Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES: This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY: Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS: A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-ß-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS: This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos , Quimiometria , Farmacologia em Rede , Cromatografia Gasosa-Espectrometria de Massas
13.
Angew Chem Int Ed Engl ; 63(3): e202317622, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061991

RESUMO

Simultaneous optimization of the energy level of water dissociation, hydrogen and hydroxide desorption is the key to achieving fast kinetics for the alkaline hydrogen evolution reaction (HER). Herein, the well-dispersed Ru clusters on the surface of amorphous/crystalline CeO2-δ (Ru/ac-CeO2-δ ) is demonstrated to be an excellent electrocatalyst for significantly boosting the alkaline HER kinetics owing to the presence of unique oxygen vacancy (VO ) and Ru Lewis acid-base pairs (LABPs). The representative Ru/ac-CeO2-δ exhibits an outstanding mass activity of 7180 mA mgRu -1 that is approximately 9 times higher than that of commercial Pt/C at the potential of -0.1 V (V vs RHE) and an extremely low overpotential of 21.2 mV at a geometric current density of 10 mA cm-2 . Experimental and theoretical studies reveal that the VO as Lewis acid sites facilitate the adsorption of H2 O and cleavage of H-OH bonds, meanwhile, the weak Lewis basic Ru clusters favor for the hydrogen desorption. Importantly, the desorption of OH from VO sites is accelerated via a water-assisted proton exchange pathway, and thus boost the kinetics of alkaline HER. This study sheds new light on the design of high-efficiency electrocatalysts with LABPs for the enhanced alkaline HER.

14.
Small ; 20(24): e2311136, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148296

RESUMO

Dual-engineering involved of grain boundaries (GBs) and oxygen vacancies (VO) efficiently engineers the material's catalytic performance by simultaneously introducing favorable electronic and chemical properties. Herein, a novel SnO2 nanoplate is reported with simultaneous oxygen vacancies and abundant grain boundaries (V,G-SnOx/C) for promoting the highly selective conversion of CO2 to value-added formic acid. Attributing to the synergistic effect of employed dual-engineering, the V,G-SnOx/C displays highly catalytic selectivity with a maximum Faradaic efficiency (FE) of 87% for HCOOH production at -1.2 V versus RHE and FEs > 95% for all C1 products (CO and HCOOH) within all applied potential range, outperforming current state-of-the-art electrodes and the amorphous SnOx/C. Theoretical calculations combined with advanced characterizations revealed that GB induces the formation of electron-enriched Sn site, which strengthens the adsorption of *HCOO intermediate. While GBs and VO synergistically lower the reaction energy barrier, thus dramatically enhancing the intrinsic activity and selectivity toward HCOOH.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38153818

RESUMO

Rice blast, caused by Magnaporthe oryzae(M.oryzae), is a destructive rice disease that reduces rice yield by 10% to 30% annually. It also affects other cereal crops such as barley, wheat, rye, millet, sorghum, and maize. Small RNAs (sRNAs) play an essential regulatory role in fungus-plant interaction during the fungal invasion, but studies on pathogenic sRNAs during the fungal invasion of plants based on multi-omics data integration are rare. This paper proposes a novel approach called Graph Embedding combined with Random Walk with Restart (GERWR) to identify pathogenic sRNAs based on multi-omics data integration during M.oryzae invasion. By constructing a multi-omics network (MRMO), we identified 29 pathogenic sRNAs of rice blast fungus. Further analysis revealed that these sRNAs regulate rice genes in a many-to-many relationship, playing a significant regulatory role in the pathogenesis of rice blast disease. This paper explores the pathogenic factors of rice blast disease from the perspective of multi-omics data analysis, revealing the inherent connection between pathogenic factors of different omics. It has essential scientific significance for studying the pathogenic mechanism of rice blast fungus, the rice blast fungus-rice model system, and the pathogen-host interaction in related fields.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Oryza/microbiologia , Magnaporthe/genética , Virulência
16.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38124211

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and stereotyped behaviors. Although major advances in basic research on autism have been achieved in the past decade, and behavioral interventions can mitigate the difficulties that individuals with autism experience, little is known about the many fundamental issues of the interventions, and no specific medication has demonstrated efficiency for the core symptoms of ASD. Intermittent hypobaric hypoxia (IHH) is characterized by repeated exposure to lowered atmospheric pressure and oxygen levels, which triggers multiple physiological adaptations in the body. Here, using two mouse models of ASD, male Shank3B -/- and Fmr1 -/y mice, we found that IHH training at an altitude of 5,000 m for 4 h per day, for 14 consecutive days, ameliorated autistic-like behaviors. Moreover, IHH training enhanced hypoxia inducible factor (HIF) 1α in the dorsal raphe nucleus (DRN) and activated the DRN serotonergic neurons. Infusion of cobalt chloride into the DRN, to mimic IHH in increasing HIF1α expression or genetically knockdown PHD2 to upregulate HIF1α expression in the DRN serotonergic neurons, alleviated autistic-like behaviors in Shank3B -/- mice. In contrast, downregulation of HIF1α in DRN serotonergic neurons induced compulsive behaviors. Furthermore, upregulating HIF1α in DRN serotonergic neurons increased the firing rates of these neurons, whereas downregulation of HIF1α in DRN serotonergic neurons decreased their firing rates. These findings suggest that IHH activated DRN serotonergic neurons via upregulation of HIF1α, and thus ameliorated autistic-like phenotypes, providing a novel therapeutic option for ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Masculino , Animais , Transtorno Autístico/genética , Transtorno Autístico/terapia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/terapia , Núcleo Dorsal da Rafe , Neurônios Serotoninérgicos/fisiologia , Hipóxia , Fenótipo , Proteína do X Frágil da Deficiência Intelectual
17.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5871-5880, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114183

RESUMO

This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1ß, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(ß-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and ß-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in rat serum, increased VEGF and ß-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and ß-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1ß. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing ß-EP levels.


Assuntos
Isquemia Encefálica , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Comprimidos
18.
J Neurochem ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987505

RESUMO

Resolvin D2 (RvD2), an endogenous lipid mediator derived from docosahexaenoic acid, has been demonstrated to have analgesic effects. However, little is known about the mechanism underlying RvD2 in pain relief. Herein, we demonstrate that RvD2 targeted the P2X3 receptor as an analgesic. The electrophysiological activity of P2X3 receptors was suppressed by RvD2 in rat dorsal root ganglia (DRG) neurons. RvD2 pre-application dose-dependently decreased α,ß-methylene-ATP (α,ß-meATP)-induced inward currents. RvD2 remarkably decreased the maximum response to α,ß-meATP, without influencing the affinity of P2X3 receptors. RvD2 also voltage-independently suppressed ATP currents. An antagonist of the G protein receptor 18 (GPR18), O-1918, prevented the RvD2-induced suppression of ATP currents. Additionally, intracellular dialysis of the Gαi/o -protein antagonist pertussis toxin (PTX), the PKA antagonist H89, or the cAMP analog 8-Br-cAMP also blocked the RvD2-induced suppression. Furthermore, α,ß-meATP-triggered depolarization of membrane potential along with the action potential bursts in DRG neurons were inhibited by RvD2. Lastly, RvD2 attenuated spontaneous nociceptive behaviors as well as mechanical allodynia produced by α,ß-meATP in rats via the activation of the peripheral GPR18. These findings indicated that RvD2 inhibited P2X3 receptors in rat primary sensory neurons through GPR18, PTX-sensitive Gαi/o -proteins, and intracellular cAMP/PKA signaling, revealing a novel mechanism that underlies its analgesic effects by targeting P2X3 receptors.

19.
Huan Jing Ke Xue ; 44(10): 5718-5726, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827787

RESUMO

Phosphorus exerts a good stabilization effect on soil lead. In this study, the findings of 90 papers were summarized using the Meta-analysis method. These papers described the immobilization of soil lead using phosphorus from 1997 to 2022. The effects of phosphorus materials on the stabilization rate and speciation transformation of soil Pb and soil pH were quantitatively analyzed based on soil properties, stabilization process conditions, and types of phosphorus materials. The results revealed that the stronger the soil alkalinity (pH ≥ 7.5), the lower is the content of lead (≤ 500 mg·kg-1), and the higher the content of soil organic matter (>0.5%), the more conducive it is to the phosphorus-based stabilization of soil lead; the stabilization rates are 75.21%, 34.97% and 93.12%, respectively. In terms of stabilization process conditions, the higher the addition amount of phosphorus (≥ 10%), the higher is the water content (>50%)and longer is the curing time (≥ 30 days), and the higher the curing temperature (≥ 40℃), the more conducive it is to the stabilization of soil lead, and the stabilization rates are 80.65%, 84.98%, 79.39%, and 41.44%, respectively. According to the types of phosphorus, soluble phosphorus had a high stabilization rate of soil lead (96.24%). The conversion rate of exchangeable lead and carbonate-bound lead to residual lead was 95.93%. Soluble phosphorus was majorly acidic, reducing the soil pH by 7.27%, whereas insoluble phosphorus was majorly alkaline, increasing the soil pH by 3.63%. In conclusion, when the soil pH ≥ 7.5, soil lead content ≤ 500 mg·kg-1, soil organic matter content >0.5%, soluble phosphorus addition ≥ 10%, water content >50%, curing time ≥ 30 days, and curing temperature ≥ 40℃, phosphorus had a better effect on soil Pb stabilization. In the actual remediation process of lead-contaminated soil, to improve the lead stabilization rate, it is necessary to comprehensively consider the effects of soil properties, stabilization process conditions, phosphorus, and other factors.

20.
Neuropharmacology ; 241: 109739, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820935

RESUMO

Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-ß-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.


Assuntos
Canais Iônicos Sensíveis a Ácido , Sincalida , Ratos , Animais , Ratos Sprague-Dawley , Sincalida/farmacologia , Sincalida/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Células Receptoras Sensoriais , Dor/metabolismo , Gânglios Espinais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA