RESUMO
Keratin, as a promising bioresource, possesses significant potential for diverse biological applications due to its favorable biocompatibility, low toxicity, biodegradability, and cell adhesion ability. However, there are few studies on the cell-penetrating ability of keratin peptides (KEPs) for biomolecule delivery. Therefore, this study explored the cell-penetrating ability of KEPs with different molecular weights (Mw) on Caco2 cells using fluorescein-labeled insulin (FITC-INS) as the target intracellular biomolecule. The potential cell-penetrating mechanism was elaborated by combining cellular investigation with the physicochemical characterization of KEPs. The result shows that the KEPs <3 kDa (KEP1) exhibited the highest cell-penetrating ability at 2 mg/mL, allowing efficient delivery of FITC-INS into Caco2 cells without covalent bonding. The cellular uptake mechanism was energy-dependent, mainly involving macropinocytosis. The further fractionation of KEP1 reveals that the most effective components consisted of 8-19 amino acids, including specific hydrophobic peptides (e.g., RVVIEPSPVVV and IIIQPSPVVV), PPII amphipathic peptides (e.g., PPPVVVTFP and FIQPPPVVV), and Cys-rich peptides (e.g., LCAPTPCGPTPL and CLPCRPCGPTPL). Additionally, analysis of the secondary and tertiary structure and amino acid composition illustrated that KEP1 exhibited rich hydrophobic residues and disulfide bonds, which probably contributed to its cell-penetrating ability, as opposed to its small particle size and electrostatic interactions. This study reveals the cell-penetrating ability of KEPs, thus highlighting their potential as biomaterials for noncovalently delivering biomolecules.
Assuntos
Peptídeos Penetradores de Células , Queratinas , Humanos , Células CACO-2 , Queratinas/química , Queratinas/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Insulina/química , Insulina/metabolismo , Insulina/administração & dosagem , Insulina/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Fluoresceína-5-Isotiocianato/química , Sistemas de Liberação de MedicamentosRESUMO
Accurately assaying tumor-derived circulating extracellular vesicles (EVs) is fundamental in noninvasive cancer diagnosis and therapeutic monitoring but limited by challenges in efficient EV isolation and profiling. Here, we report a bioinspired buoyancy-driven metal-organic framework (MOF) corona that leverages on-bubble coordination and dual-encoded surface-enhanced Raman scattering (SERS) nanotags to streamline rapid isolation and ultrasensitive profiling of plasma EVs in a single assay for cancer diagnostics. This integrated bubble-MOF-SERS EV assay (IBMsv) allows barnacle-like high-density adhesion of MOFs on a self-floating bubble surface to enable fast isolation (2 min, near 90% capture efficiency) of tumor EVs via enhanced EV-MOF binding. Also, IBMsv harnesses four-plexed SERS nanotags to profile the captured EV surface protein markers at a single-particle level. Such a sensitive assay allows multiplexed profiling of EVs across five cancer types, revealing heterogeneous EV surface expression patterns. Furthermore, the IBMsv assay enables cancer diagnosis in a pilot clinical cohort (n = 55) with accuracies >95%, improves discrimination between cancer and noncancer patients via an algorithm, and monitors the surgical treatment response from hepatocellular carcinoma patients. This assay provides a fast, sensitive, streamlined, multiplexed, and portable blood test tool to enable cancer diagnosis and response monitoring in clinical settings.
Assuntos
Vesículas Extracelulares , Estruturas Metalorgânicas , Análise Espectral Raman , Estruturas Metalorgânicas/química , Humanos , Vesículas Extracelulares/química , Análise Espectral Raman/métodos , Neoplasias/sangue , Neoplasias/diagnósticoRESUMO
Staphylococcus aureus (S. aureus) is one of the foodborne pathogens. This study aimed to investigate the prevalence of S. aureus in ready-to-eat (RTE) fruits and vegetables in Shanghai, China. We evaluated antibiotic resistance patterns and genetic diversity of isolates through whole genome sequencing. Our findings demonstrated that out of 143 market samples, 47 (32.87%) tested positive for S. aureus, with the prevalence rates ranging from 10% to 57.14% among 12 types of RTE fruits and vegetables. Most isolates were resistant to trimethoprim-sulphamethoxazole, oxacillin, and ampicillin. We identified a total of 15 antibiotic resistance genes associated with resistance to 6 antibiotics, such as fosfomycin, fluoroquinolone, and ß-lactam. Adhesion genes and enterotoxin genes, including icaA, icaB, icaC, set, seg, and sec, were also identified. Seven multi-locus sequence types (MLST) were detected, two of which were novel (ST7208 and ST7986). Notably, ST705-t529 (34.04%) and ST6-t701 (27.79%) represented the predominant types of S. aureus. Furthermore, three of the isolates were confirmed to be methicillin-resistant S. aureus by mecA genes. Taken together, our results highlight the high prevalence of S. aureus in RTE fruits and vegetables, posing a potential threat to food safety, particularly due to its high level of antibiotic resistance.
RESUMO
Breakthroughs in circulating tumor DNA (ctDNA) analysis are critical in tumor liquid biopsies but remain a technical challenge due to the double-stranded structure, extremely low abundance, and short half-life of ctDNA. Here, we report an electrochemical CRISPR/dCas9 sensor (E-dCas9) for sensitive and specific detection of ctDNA at a single-nucleotide resolution. The E-dCas9 design harnesses the specific capture and unzipping of target ctDNA by dCas9 to introduce a complementary reporter probe for specific molecular assembly and signal amplification. By efficient homogeneous assembly and interfacial click reaction, the assay demonstrates superior sensitivity (up to 2.86 fM) in detecting single-base mutant ctDNA and a broad dynamic range spanning 6 orders of magnitude. The sensor is also capable of measuring 10 fg/µL of a mutated target in excess of wild-type ones (1 ng/µL), equivalent to probing 0.001% of the mutation relative to the wild type. In addition, our sensor can monitor the dynamic expression of cellular genomic DNA and allows accurate analysis of blood samples from patients with nonsmall cell lung cancer, suggesting the potential of E-dCas9 as a promising tool in ctDNA-based cancer diagnosis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genótipo , Biomarcadores Tumorais , MutaçãoRESUMO
AIMS: Disinfectants such as benzalkonium chloride (BC), extensively used in animal farms and food-processing industries, contribute to the development of adaptive and cross-resistance in foodborne pathogens, posing a serious threat to food safety and human health. The purpose of this study is to explore whether continuous exposure of Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-) to sublethal concentrations of BC could result in acquired resistance to this agent and other environmental stresses (e.g. antibiotics, heat, and acid). METHODS AND RESULTS: BC tolerance increased in all tested strains after exposure to gradually increasing concentrations of BC, with increases in minimum inhibitory concentrations between two and sixfold. The survival rate of BC-adapted strains was significantly (P < 0.05) higher than that of their wild-type (non-adapted) counterparts in lethal concentrations of BC. In addition, significant reductions (P < 0.05) in zeta potential were observed in BC-adapted strains compared to wild-type ones, indicating that a reduction in cell surface charge was a cause of adaptative resistance. More importantly, two BC-adapted strains exhibited increased antibiotic resistance to levofloxacin, ceftazidime, and tigecycline, while gene mutations (gyrA, parC) and antibiotic efflux-related genes (acrB, mdsA, mdsB) were detected by genomic sequencing analysis. Moreover, the tolerance of BC-adapted strains to heat (50, 55, and 60°C) and acid (pH 2.0, 2.5) was strain-dependent and condition-dependent. CONCLUSIONS: Repeated exposure to sublethal concentrations of BC could result in the emergence of BC- and antibiotic-resistant S. 1,4,[5],12:i:- strains.
Assuntos
Antibacterianos , Desinfetantes , Animais , Humanos , Antibacterianos/farmacologia , Compostos de Benzalcônio/farmacologia , Desinfetantes/farmacologia , Sorogrupo , CeftazidimaRESUMO
Salmonella enterica is an important foodborne pathogen that constitutes a major health hazard. The emergence and aggravation of antibiotic-resistant Salmonella has drawn attention widely around the world. Conducting a risk assessment of antibiotic-resistant foodborne pathogens throughout the food chain is a pressing requirement for ensuring food safety. The growth, survival capability, and virulence of antibiotic-resistant Salmonella represent crucial biological characteristics that play an important role in microbial risk assessment. In this study, eight antibiotic-sensitive S. enterica strains were induced by Ampicillin (Amp) and Ciprofloxacin (CIP), respectively, and AMP-resistant and CIP-resistant mutants were obtained. The growth characteristics under different temperatures (25, 30, 35 °C), viability after exposure to heat (55, 57.5, 60 °C) and acid (HCl, pH = 3.0), the virulence potential (adhesion and invasion to Caco-2 cells, biofilm formation and motility) and the lethality in a model species (Galleria mellonella) were evaluated and compared for S. enterica strains before and after antibiotic exposure. The induction by AMP and CIP are likely to promote cross-antibiotic resistance to their antibiotic classes, ß-lactams and quinolones, as well as some compound antibiotics. It was observed that generally the antibiotic-induction-resistant strains showed decreased growth ability and lower heat resistance, although the differences were not significant at all the conditions tested. The AMP-resistant strains were significantly less acid resistance than the sensitive and the CIP-resistant ones, while exhibiting increased biofilm formation ability. In general, the antibiotic-induced resistance did not significantly affect the motility, adherence, or invasion ability of Caco-2 cells. However, CIP-resistant strains displayed lower lethality in G. mellonella infection, whereas AMP-resistant strains did not, and even two strains improved lethality. The study of the biological characteristics of antibiotic-resistant S. enterica is essential in better understanding the microbial risks to both the food chain and human health, thereby facilitating a more accurate risk assessment.
RESUMO
The increasing resistance to cephalosporins in Salmonella poses a serious threat to public health. In our previous study, the blaCTX-M-101 gene, a new blaCTX-M variant, was first reported in Salmonella enterica serovar Enteritidis (S. Enteritidis). Here, we further analyzed the genome characterization, transferability, and resistance mechanism of one S. Enteritidis isolate (SJTUF14523) carrying blaCTX-M-101 from an outpatient in 2016 in Xinjiang, China. This strain was a multidrug resistance (MDR) isolate and exhibited resistance to ceftazidime (MIC = 64 µg/mL), cefotaxime (MIC = 256 µg/mL), and cefepime (MIC = 16 µg/mL). Phylogenetic analysis revealed that SJTUF14523 had a close relationship to another S. Enteritidis isolate from the United States. In the presence of plasmid p14523A, there were 8- and 2133-fold increases in the MICs of cephalosporins in Escherichia coli C600 in the conjugation. Gene cloning results indicated that blaCTX-M-101 was the decisive mechanism leading to ceftazidime and cefotaxime resistance that could make the MICs break through the resistance breakpoint. Plasmid sequencing revealed that the blaCTX-M-101 gene was located on an IncI1-Iα transferable plasmid (p14523A) that was 85,862 bp in length. Sequence comparison showed that p14523A was a novel hybrid plasmid that might have resulted from the interaction between a homologous region. Furthermore, we found a composite transposon unit composed of ISEcp1, blaCTX-M-101, and orf477 in p14523A. ISEcp1-mediated transposition was likely to play a key role in the horizontal transfer of blaCTX-M-101 among plasmids in S. Enteritidis. Collectively, these findings underline further challenges in the prevention and control of antibiotic resistance posed by new CTX-M-101-like variants in Salmonella.
RESUMO
Integrating clinical rare cell enrichment, culture, and single-cell phenotypic profiling is currently hampered by the lack of competent technologies, which typically suffer from weak cell-interface collision affinity, strong nonspecific adsorption, and the potential uptake. Here, we report cells-on-a-bubble, a bioinspired, self-powered bioorthogonal microbubble (click bubble) that leverages a clickable antifouling nanointerface and a DNA-assembled sucker-like polyvalent cell surface, to enable instant and suspended isolation of circulating tumor cells (CTCs) within minutes. Using this biomimetic engineering strategy, click bubbles achieve a capture efficiency of up to 98%, improved by 20% at 15 times faster over their monovalent counterparts. Further, the buoyancy-activated bubble facilitates self-separation, 3D suspension culture, and in situ phenotyping of the captured single cancer cells. By using a multiantibody design, this fast, affordable micromotor-like click bubble enables suspended enrichment of CTCs in a cohort (n = 42) across three cancer types and treatment response evaluation, signifying its great potential to enable single-cell analysis and 3D organoid culture.
Assuntos
Incrustação Biológica , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Microbolhas , Incrustação Biológica/prevenção & controle , Separação CelularRESUMO
Protein-nucleic acid interactions are not only fundamental to genetic regulation and cellular metabolism, but molecular basis to artificial biosensors. However, such interactions are generally weak and dynamic, making their specific and sensitive quantitative detection challenging. By using primer exchange reaction (PER)-amplified protein-nucleic acid interactions, we here design a universal and ultrasensitive electrochemical sensor to quantify microRNAs (miRNAs) in blood. This PER-miR sensor leverages specific recognition between S9.6 antibodies and miRNA/DNA hybrids to couple with PER-derived multi-enzyme catalysis for ultrasensitive miRNA detection. Surface binding kinetic analysis shows a rational Kd (8.9 nM) between the miRNA/DNA heteroduplex and electrode-attached S9.6 antibody. Based on such a favorable affinity, the programmable PER amplification enables the sensor to detect target miRNAs with sensitivity up to 90.5 aM, three orders of magnitude higher than that without PER in routine design, and with specificity of single-base resolution. Furthermore, the PER-miR sensor allows detecting multiple miRNAs in parallel, measuring target miRNA in lysates across four types of cell lines, and differentiating tumor patients from healthy individuals by directly analyzing the human blood samples (n = 40). These advantages make the sensor a promising tool to enable quantitative sensing of biomolecular interactions and precision diagnostics.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Ácidos Nucleicos , Humanos , MicroRNAs/análise , Cinética , DNA/química , Limite de Detecção , Técnicas EletroquímicasRESUMO
Salmonella is a common chicken-borne pathogen that causes human infections. Data below the detection limit, referred to as left-censored data, are frequently encountered in the detection of pathogens. The approach of handling the censored data was regarded to affect the estimation accuracy of microbial concentration. In this study, a set of Salmonella contamination data was collected from chilled chicken samples using the most probable number (MPN) method, which consisted of 90.42% (217/240) non-detect values. Two simulated datasets with fixed censoring degrees of 73.60% and 90.00% were generated based on the real-sampling Salmonella dataset for comparison. Three methodologies were applied for handling left-censored data: (i) substitution with different alternatives, (ii) the distribution-based maximum likelihood estimation (MLE) method, and (iii) the multiple imputation (MI) method. For each dataset, the negative binomial (NB) distribution-based MLE and zero-modified NB distribution-based MLE were preferable for highly censored data and resulted in the least root mean square error (RMSE). Replacing the censored data with half the limit of quantification was the next best method. The mean concentration of Salmonella monitoring data estimated by the NB-MLE and zero-modified NB-MLE methods was 0.68 MPN/g. This study provided an available statistical method for handling bacterial highly left-censored data.
Assuntos
Galinhas , Modelos Estatísticos , Humanos , Animais , Simulação por Computador , Funções VerossimilhançaRESUMO
Exosomes are emerging as promising biomarkers for cancer diagnosis, yet sensitive and accurate quantification of tumor-derived exosomes remains a challenge. Here, we report an ultrasensitive and specific exosome sensor (NPExo) that initially leverages hierarchical nanostructuring array and primer exchange reaction (PER) for quantitation of cancerous exosomes. This NPExo uses a high-curvature nanostructuring array (bottom) fabricated by single-step electrodeposition to enhance capturing of the target exosomes. The immuno-captured exosome thus provides abundant membrane sites to insert numerous cholesterol-DNA probes with a density much higher than that by immune pairing, which further allows PER-based DNA extension to assemble enzyme concatemers (up) for signal amplification. Such a bottom-up signal-boosting design imparts NPExo with ultrahigh sensitivity up to 75 particles/mL (i.e., <1 exosome per 10 µL) and a broad dynamic range spanning 6 orders of magnitude. Furthermore, our sensor allows monitoring subtle exosomal phenotypic transition and shows high accuracy in discrimination of liver cancer patients from healthy donors via blood samples, suggesting the great potential of NPExo as a promising tool in clinical diagnostics.
Assuntos
Exossomos , Neoplasias Hepáticas , Humanos , Fractais , DNA/genéticaRESUMO
Contaminations of pathogenic and spoilage microbes on foods are threatening food safety and quality, highlighting the importance of developing antimicrobial agents. According to different working mechanisms, the antimicrobial activities of yeast-based agents were summarized from two aspects: antagonism and encapsulation. Antagonistic yeasts are usually applied as biocontrol agents for the preservation of fruits and vegetables via inactivating spoilage microbes, usually phytopathogens. This review systematically summarized various species of antagonistic yeasts, potential combinations to improve the antimicrobial efficiency, and the antagonistic mechanisms. The wide applications of the antagonistic yeasts are significantly limited by undesirable antimicrobial efficiency, poor environmental resistance, and a narrow antimicrobial spectrum. Another strategy for achieving effective antimicrobial activity is to encapsulate various chemical antimicrobial agents into a yeast-based carrier that has been previously inactivated. This is accomplished by immersing the dead yeast cells with porous structure in an antimicrobial suspension and applying high vacuum pressure to allow the agents to diffuse inside the yeast cells. Typical antimicrobial agents encapsulated in the yeast carriers have been reviewed, including chlorine-based biocides, antimicrobial essential oils, and photosensitizers. Benefiting from the existence of the inactive yeast carrier, the antimicrobial efficiencies and functional durability of the encapsulated antimicrobial agents, such as chlorine-based agents, essential oils, and photosensitizers, are significantly improved compared with the unencapsulated ones.
Assuntos
Anti-Infecciosos , Óleos Voláteis , Saccharomyces cerevisiae , Cloro , Fármacos Fotossensibilizantes , FrutasRESUMO
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Assuntos
Listeria monocytogenes , Nisina , Nisina/farmacologia , Antibacterianos/farmacologia , Carne , Microbiologia de AlimentosRESUMO
Chicken feather (CF) has been deemed as one of the main poultry byproducts with a large amount produced globally. However, the robust chemical nature of chicken feathers has been limiting in its wide-scale utilization and valorization. The study proposed a strategy of keratin regeneration from chicken feather combining ultrasound and Cysteine (Cys)-reduction for keratin regeneration. First, the ultrasonic effect on feather degradation and keratin properties was systematically explored based on Cys-reduction. Results showed that the feather dissolution was significantly improved by increasing both ultrasonic time and power, and the former had a greater impact on keratin yield. However, the treatment time over 4 h led to a decrease of keratin yield, producing more soluble peptides, > 9.7 % of which were < 0.5 kDa. Meanwhile, prolonging time decreased the thermal stability with weight loss at a lower temperature and amino acids content (e.g., Ser, Pro and Gly) of keratin. Conversely, no remarkable damage in chemical structure and thermal stability of regenerated keratin was observed by only increasing ultrasonic power, while the keratin solubility was notably promoted and reached 745.72 mg·g-1 in NaOH (0.1 M) solution (400 W, 4 h). The regenerated keratin under optimal conditions (130 W, 2.7 h, and 15 % of Cys) possessed better solubility while without obvious damage in chemical structure, thermal stability, and amino acids composition. The study illustrated that ultrasound physically improved CF degradation and keratin solubility without nature damage and provided an alternative for keratin regeneration involving no toxic reagent, probably holding promise in the utilization and valorization of feather waste.
Assuntos
Plumas , Queratinas , Animais , Plumas/química , Queratinas/química , Galinhas , Peptídeos , Aminoácidos/análiseRESUMO
Increasing antibiotic resistance has shifted researchers' focus to antimicrobial peptides (AMPs) as alternatives to antibiotics. AMPs are small, positively charged, amphipathic peptides with secondary helical structures. They have the ability to disrupt the bacterial membrane and create wedges due to electrostatic differences. Water molecules enter the pathogens through those wedges and disrupt their normal cellular functioning, eventually causing the death of the pathogens. Keeping in mind the importance of AMPs, this review compiles recent data and is divided into three parts. The first part explains the AMP structure and properties, the second part comprises the spectroscopy techniques currently used for evaluating the AMP-bacterial targeting mechanism as well as its structure and safety; and the third part describes the production of AMPs from an animal source (whey protein). Most of the peptides that were used in recent studies have been either the precursors of a natural peptide or synthetic peptides with some modifications, but data on the exploitation of dairy protein are scarce. Among the little-studied milk proteins and peptides, in the last three years, whey protein has been studied the least based on the reported data. Because whey protein is a leftover part of cheese making that often drains out as cheese waste, causing soil and environmental pollution, today, the need of the hour is to produce safe AMPs from whey protein. The use of whey protein that is based on hydrolyzing lactic acid bacteria with some structural modifications can increase AMPs' potency, stability, and safety, and it can also help to avoid soil and environmental pollution as a result of whey drainage.
RESUMO
Salmonella enterica serovar Indiana (S. Indiana) is an extremely expanded foodborne pathogen in China in recent years. This study aimed to elucidate the national prevalence and phylogenomic characterization of this pathogen in China. Among 5, 287 serotyped Salmonella isolates collected during 2002 to 2018, 466 S. Indiana isolates were found in 15 provinces, and 407 were identified to be ST17, and the rest were ST2040. Among 407 ST17 isolates, 372 (91.4%) were multidrug resistant, and 366 (89.9%) were resistant to ciprofloxacin, 235 (57.7%) were further resistant to ceftriaxone. Phylogenomic analysis revealed that ST17 isolates were classified into four clades (I, II, III and IV), which appeared in international clonal dissemination. ST17 isolates from China fell into Clade IV with part of isolates from the United Kingdom, the United States, South Korea, and Thailand, suggesting their close genetic relationship. Mutations in quinolone resistance-determining regions (QRDR) of GyrA and ParC, and plasmid-mediated quinolone resistance (PMQR) genes aac(6')-Ib-cr, oqxAB, and qnrS as well as extended spectrum ß-lactamases (ESBL) genes blaCTX-M, blaOXA, and blaTEM in isolates from Clade IV were much higher than those from other three clades. Various blaCTX-M subtypes (blaCTX-M-65, blaCTX-M-55, blaCTX-M-27, blaCTX-M-14, and blaCTX-M-123) with ISEcp1, IS903B, ISVsa5, and IS1R were found in ST17 isolates, especially Tn1721 containing ΔISEcp1-blaCTX-M-27-IS903B in P1-like bacteriophage plasmids. These findings on the prevalent and genomic characterization for the S. Indiana multidrug-resistant ST17 clone in China, which have not been reported yet, provide valuable insights into the potential risk of this high-resistant clone. IMPORTANCE Fluoroquinolones and cephalosporins are the primary choices for severe salmonellosis treatment. S. Indiana has become one of the most prevalent serovars in breeding poultry and poultry meats in China in recent years. ST17 was recognized as the leading epidemiological importance in S. Indiana because of its high-level resistance to the most of common antibiotics, including ciprofloxacin and ceftriaxone. However, the prevalence and phylogenomic characterization of ST17 isolates are unclear. Here, we did a retrospective screening on a large scale for S. Indiana in China, and performed its phylogenomic analysis. It was found that ST17 isolates had extensive spread in 15 provinces of China and became a multidrug-resistant clone. The international spread of the ST17 isolates was observed among several countries, especially China, the United Kingdom, and the United States. Our study emphasized the importance of surveillance of a high-resistant S. Indiana ST17 clone to combat its threat to public health.
Assuntos
Quinolonas , Salmonella enterica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftriaxona , Ciprofloxacina/uso terapêutico , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Estudos Retrospectivos , Salmonella enterica/genética , Sorogrupo , beta-Lactamases/genéticaRESUMO
Listeria monocytogenes (LM) is a food-borne pathogen that can cause listeriosis. Pregnant women are main target population of listeriosis due to pregnancy-associated immune deficiency and unique intracellular infection ability of LM to non-phagocytic cells. LM can cross the placental barrier and cause significant harm to the fetus, including premature birth, miscarriage and even stillbirth. The role of placenta-specific virulence factors is particularly important for researchers to understand how it crosses the placental barrier and infects the fetus during LM infection. This review started by describing the listeriosis in pregnant women, followed by summarizing the advances in understanding the LM vertical transplacental infection and the mechanism of LM colonization in the placenta. Finally, recent advances in identifying placenta-specific virulence factors involved in LM infections were presented, with the aim to facilitate the control of LM transplacental infection and the improvement of food safety.
Assuntos
Listeria monocytogenes , Listeriose , Feminino , Humanos , Listeria monocytogenes/genética , Placenta , Gravidez , Fatores de Virulência/genéticaRESUMO
The importance of single-cell variability is increasingly prominent with the developments in foodborne pathogens modeling. Traditional predictive microbiology model cannot accurately describe the growth behavior of small numbers of cells due to individual cell heterogeneity. The objective of the present study was to develop predictive models for single cell lag times of Salmonella Enteritidis after heat and chlorine treatment. A time-lapse microscopy method was employed to evaluate the single cell lag time by monitoring cell divisions. Four supervised machine learning algorithms including gradient boosting regression tree (GBRT), artificial neural network (ANN), random forest (RF), and support vector regression (SVR) were applied and compared. Results show that all four machine learning models have good predictive capabilities without an overfitting of the data. The ANN approach demonstrated superior prediction performance over other machine learning models (RMSE: 0.209, MAE: 0.135 and R2: 0.989). Furthermore, the SHapley Additive exPlanation (SHAP) measures were used to capture the influence of each feature on the model output, and results revealed that population lag times and sublethal injury rate have dominant impacts on the single cell lag time. Consequently, the findings generated from this study may be useful in managing the potential food safety risk caused by single cells of foodborne pathogens.
Assuntos
Cloro , Salmonella enteritidis , Temperatura Alta , Aprendizado de Máquina , Redes Neurais de ComputaçãoRESUMO
Antibiotic resistance in Salmonella is a global public health problem. Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-), a monophasic variant of Salmonella Typhmurium, is one of the leading Salmonella serovars in several countries. This study aimed to assess the prevalence of antibiotic resistance to this serovar in China through a systematic review and meta-analysis. Nineteen eligible studies during 2011-2021 were included. A total of 4514 isolates from humans, animals, foods, and the environment were reported, which mainly concerned isolates found in Guangdong, Guangxi, Jiangsu, and Shanghai. A random-effects model was used to estimate the pooled resistance rate of S. 1,4,[5],12:i:-. Rates were found to be very high (values ≥ 75%) for tetracycline, ampicillin, sulfisoxazole, and streptomycin; high (50-75%) for nalidixic acid, amoxicillin-clavulanic acid, and chloramphenicol; and moderate (25-50%) for trimethoprim-sulfamethoxazole, kanamycin, trimethoprim, and gentamicin. The rates of resistance to ciprofloxacin, cefotaxime, ceftriaxone, cefepime, ceftazidime, and colistin were low (values ≤ 25%), but of great concern in terms of their current clinical importance. Furthermore, a high multidrug resistance rate (86%, 95% CI: 78-92%) was present in S. 1,4,[5],12:i:-, with the ASSuT pattern largely dominating. Subgroup analysis results showed that the high heterogeneity of resistance rates was not entirely dependent on isolated sources. Taken together, the severity of antibiotic resistance in S. 1,4,[5],12:i:- urgently requires the rational use of antibiotics in future infection control and antibiotic stewardship programs.
RESUMO
Water consumed by photosynthesis and growth rather than transpiration accounts for only 1-3% of the water absorbed by roots. Leaf intracellular water transport rate (LIWTR) based on physiological impedance (Z) provides information on the transport traits of the leaf internal retained water, which helps determine the intracellular water status. Solanum lycopersicum plants were subjected to five different levels of relative soil water content (SWC R ) (e.g., 100, 90, 80, 70, and 60%) for 3 months. The leaf water potential (ΨL), Z, photosynthesis, growth, and water-use efficiency (WUE) were determined. A coupling model between gripping force and physiological impedance was established according to the Nernst equation, and the inherent LIWTR (LIWTR i ) was determined. The results showed that LIWTR i together with Ψ L altered the intracellular water status as water supply changed. When SWC R was 100, 90, and 80%, stomatal closure reduced the transpiration and decreased the water transport within leaves. Net photosynthetic rate (P N) was inhibited by the decreased stomatal conductance (g s ) or Ψ L , but constant transport of the intracellular water was conducive to plant growth or dry matter accumulation. Remarkably, increased LIWTR i helped to improve the delivery and WUE of the retained leaf internal water, which maintained P N and improved the WUE at 70% but could not keep the plant growth and yields at 70 and 60% due to the further decrease of water supply and Ψ L . The increased transport rate of leaf intracellular water helped plants efficiently use intracellular water and maintain growth or photosynthesis, therefore, adapting to the decreasing water supply. The results demonstrate that the importance of transport of the leaf intracellular water in plant responses to water deficit by using electrophysiological parameters. However, the LIWTR in this research is not directly linked to the regulation of photosynthesis and growth, and the establishment of the direct relationship between leaf internal retained water and photosynthesis and growth needs further research.