Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 51(2): 581-589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37819451

RESUMO

PURPOSE: The objective of this study was to evaluate the diagnostic performance and image quality of total-body positron emission tomography/computed tomography (PET/CT) imaging using a half-dose of [68 Ga]Ga-prostate specific membrane antigen ([68 Ga]Ga-PSMA) radiotracer, compared to conventional short axial field-of-view PET/CT imaging using a full dose of [68 Ga]Ga-PSMA. METHODS: This retrospective study enrolled 52 patients with biochemical recurrent (BCR) prostate cancer after radical prostatectomy who underwent total-body PET/CT with a half-dose (0.9-1.1 MBq/kg) of [68 Ga]Ga-PSMA. These patients were matched by baseline characteristics to another 52 BCR patients after prostatectomy who underwent conventional PET/CT with a full dose (1.8-2.2 MBq/kg) of [68 Ga]Ga-PSMA. The half-dose group was further divided into 5-min (G5) and 2-min (G2) acquisition subgroups. Image quality was assessed through subjective analysis using a 5-point scale and objective measurements of standard uptake value maximum (SUVmax), standard uptake value mean (SUVmean), background variation (BV) of the liver, blood pool, and parotid glands. Additionally, SUVmax and tumor-to-background ratio (TBR) were calculated for lesions. RESULTS: No significant difference in subjective image quality was found between the G2 and full-dose groups (p > 0.05). PET/CT image quality was significantly higher for the G5 versus G2 (p < 0.001) and full-dose groups (p < 0.001). TBR did not differ between the G2 and full-dose groups (4.23 ± 5.21 vs 4.22 ± 3.97, p = 0.99). Liver BV was significantly lower for G2 versus full-dose groups (0.16 ± 0.03 vs 0.20 ± 0.05, p < 0.001). CONCLUSIONS: Total-body PET/CT with a half-dose [68 Ga]Ga-PSMA yields image quality superior or comparable to that of conventional PET/CT. The utilization of total-body [68 Ga]Ga-PSMA PET/CT meets the diagnostic demands of BCR patients, particularly those who exhibit reduced tolerance to prolonged horizontal positioning and scan durations, while simultaneously reducing radiation exposure for the subjects.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Retrospectivos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Radioisótopos de Gálio , Ácido Edético
2.
Am J Transl Res ; 8(10): 4499-4509, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27830035

RESUMO

Seizures, which result from synchronized aberrant firing of neuronal populations, can cause long-term sequelae, such as epilepsy, cognitive and behavioral issues, in which the synaptic plasticity alteration may play an important role. Long-term potentiation (LTP) is a persistent increase in synaptic strength and is essential for learning and memory. In the present study, we first examined the alteration of cognitive impairments and synaptic plasticity in mice with seizures, then explored the underlying mechanism involving pro-inflammatory factors and PI3K/Akt pathway. The results demonstrated that: (1) PTZ-induced seizure impairs learning and memory in mice, indicated by Morris water maze test; (2) PTZ-induced seizure decreased LTP; (3) the mRNA expression of IL-1ß, IL-6 and TNF-α in the hippocampus were increased in mice with seizures; (4) LTP was increased by IL-1ß receptor antagonist anakinra, but not inhibitors of IL-6 or TNF-α receptor; (5) Antagonist of IL-1ß receptor rescues deficits in learning and memory of mice with seizures through PI3K/Akt pathway. It is concluded that the IL-1ß induced by PTZ-induced seizures may impair the synaptic plasticity alteration in hippocampus as well as learning and memory ability by PI3K/Akt signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA