Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Inflamm Res ; 17: 3771-3784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882186

RESUMO

Purpose: Red blood cell distribution width to albumin ratio (RAR) is a novel inflammatory biomarker that independently predicts adverse cardiovascular events and acute kidney injury. This study aimed to assess the predictive value of RAR for cardio-renal syndrome type I (CRS-I) risk in acute myocardial infarction (AMI) patients. Patients and methods: This study retrospectively enrolled 551 patients who were definitively diagnosed as AMI between October 2021 and October 2022 at the Affiliated Zhongda Hospital of Southeast University. Participants were divided into two and four groups based on the occurrence of CRS-I and the quartiles of RAR, respectively. Demographic data, laboratory findings, coronary angiography data, and drug utilization were compared among the groups. Logistic regression and receiver operating characteristic curve (ROC) analysis were performed to identify independent risk factors for CRS-I and evaluated the predictive value of RAR for CRS-I. Results: Among the cohort of 551 patients, 103 (18.7%) developed CRS-I. Patients with CRS-I exhibited significantly elevated RAR levels compared to those without the condition, and the incidence of CRS-I correlated with escalating RAR. Univariate and multivariate logistic regression analyses identified RAR as an independent risk factor for CRS-I. ROC curves analysis demonstrated that RAR alone predicted CRS-I with an area under the curve (AUC) of 0.683 (95% CI=0.642-0.741), which was superior to the traditional inflammatory marker C-reactive protein (CRP). Adding the variable RAR to the model for predicting the risk of CRS-I further improved the predictive value of the model from 0.808 (95% CI=0.781-0.834) to 0.825 (95% CI=0.799-0.850). Conclusion: RAR is an independent risk factor for CRS-I, and high levels of RAR are associated with an increased incidence of CRS-I in patients with AMI. RAR emerges as a valuable and readily accessible inflammatory biomarker that may play a pivotal role in risk stratification in clinical practice.

2.
Endocrine ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642289

RESUMO

BACKGROUND: Insulin resistance (IR) is a pivotal pathogenesis characteristic of type 2 diabetes mellitus (T2DM). The current study aimed to explore the association between triglyceride/high-density lipoprotein cholesterol ratio (TG/HDL-c), triglyceride-glucose (TyG), and triglyceride glucose-body mass index (TyG-BMI), and T2DM incidence. METHODS: A total of 116,855 Chinese adults aged over 20 without diabetes were included. Multivariate Cox regression analysis and restricted cubic spine were utilized to investigate the association between IR indicators and T2DM. The T2DM risk across different quartiles of IR parameters was compared using Kaplan-Meier curves. The receiver operating characteristic analysis was used to investigate the predictive potential of each IR indicator for future T2DM. RESULTS: A total of 2685 participants developed T2DM during a median follow-up of 2.98 years. The adjusted hazard ratios (HR) of incident T2DM were 1.177, 2.766, and 1.1018 for TG/HDL-c, TyG, and TyG-BMI, respectively. There were significant increasing trends of T2DM across the quartiles of TG/HDL-c, TyG, and TyG-BMI. The HRs of new-onset T2DM in the highest quartiles versus the lowest quartile of TG/HDL-c, TyG, and TyG-BMI were 3.298, 8.402, and 8.468. RCS revealed the nonlinear relationship between IR and T2DM risk. The correlations between IR and T2DM were more pronounced in subjects aged <40. TyG-BMI had the highest predictive value for incident T2DM (AUC = 0.774), with a cut-off value of 213.289. CONCLUSION: TG/HDL-c, TyG, and TyG-BMI index were all significantly positively associated with higher risk for future T2DM. Baseline TyG-BMI level had high predictive value for the identification of T2DM.

3.
Int J Cardiol ; 404: 131970, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490268

RESUMO

The crucial pathophysiological and prognostic roles of the right ventricle in various diseases have been well-established. Nonetheless, conventional cardiovascular imaging modalities are frequently associated with intrinsic limitations when evaluating right ventricular (RV) morphology and function. The integration of artificial intelligence (AI) in multimodality imaging presents a promising avenue to circumvent these obstacles, paving the way for future fully automated imaging paradigms. This review aimed to address the current challenges faced by clinicians and researchers in integrating RV imaging and AI technology, to provide a comprehensive overview of the current applications of AI in RV imaging, and to offer insights into future directions, opportunities, and potential challenges in this rapidly advancing field.


Assuntos
Inteligência Artificial , Ventrículos do Coração , Humanos , Ventrículos do Coração/diagnóstico por imagem , Imagem Multimodal , Cabeça
4.
J Colloid Interface Sci ; 663: 94-102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394821

RESUMO

Propane dehydrogenation (PDH) has been an outstanding technique with a bright prospect, which can meet the growing global demand for propylene. However, undesired side reactions result in the deactivation of the Pt-based catalysts, which contribute to the insufficient lifetime of the catalysts. Herein, we describe a novel catalyst by encapsulating bimetallic CoCu-modified Pt species in S-1 zeolite for efficient dehydrogenation of propane, which synergizes the confinement of zeolites and the geometric and electronic effects on Pt species for enhancing the catalyst stability. The introduction of bimetallic additives efficiently promotes the dispersion of platinum and the electron transfer between Pt species and the additives, which greatly prolongs the lifetime of the catalysts. Particularly, no obvious deactivation is observed on 0.2Pt0.3Co0.5CuK@S-1 after 93 h on stream with a weight hourly space velocity (WHSV) of 5.4 h-1, revealing an ultralow deactivation constant of 0.0011 h-1 (t = 909 h). The formation rate of propylene still maintains at a high value of 407 mol gPt-1 h-1 (WHSV = 21.6 h-1) at 580 ℃ even after on pure propane stream for 42 h. The catalyst with the bimetallic CoCu-modified Pt species in S-1 zeolite reveals ultra-high activity and stability for PDH, which is ascribed to the highly dispersed Pt species and the stabilization effect of bimetallic additives on Pt species.

5.
Angew Chem Int Ed Engl ; 63(2): e202315053, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883532

RESUMO

A series of isostructural supramolecular cages with a rhombic dodecahedron shape have been assembled with distinct metal-coordination lability (M8 Pd6 -MOC-16, M=Ru2+ , Fe2+ , Ni2+ , Zn2+ ). The chirality transfer between metal centers generally imposes homochirality on individual cages to enable solvent-dependent spontaneous resolution of Δ8 /Λ8 -M8 Pd6 enantiomers; however, their distinguishable stereochemical dynamics manifests differential chiral phenomena governed by the cage stability following the order Ru8 Pd6 >Ni8 Pd6 >Fe8 Pd6 >Zn8 Pd6 . The highly labile Zn centers endow the Zn8 Pd6 cage with conformational flexibility and deformation, enabling intrigue chiral-Δ8 /Λ8 -Zn8 Pd6 to meso-Δ4 Λ4 -Zn8 Pd6 transition induced by anions. The cage stabilization effect differs from inert Ru2+ , metastable Fe2+ /Ni2+ , and labile Zn2+ , resulting in different chiral-guest induction. Strikingly, solvent-mediated host-guest interactions have been revealed for Δ8 /Λ8 -(Ru/Ni/Fe)8 Pd6 cages to discriminate the chiral recognition of the guests with opposite chirality. These results demonstrate a versatile procedure to control the stereochemistry of metal-organic cages based on the dynamic metal centers, thus providing guidance to maneuver cage chirality at a supramolecular level by virtue of the solvent, anion, and guest to benefit practical applications.

6.
BMC Genomics ; 24(1): 788, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110868

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a devastating chronic cardiopulmonary disease without an effective therapeutic approach. The underlying molecular mechanism of PAH remains largely unexplored at single-cell resolution. METHODS: Single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database (GSE210248) was included and analyzed comprehensively. Additionally, microarray transcriptome data including 15 lung tissue from PAH patients and 11 normal samples (GSE113439) was also obtained. Seurat R package was applied to process scRNA-seq data. Uniform manifold approximation and projection (UMAP) was utilized for dimensionality reduction and cluster identification, and the SingleR package was performed for cell annotation. FindAllMarkers analysis and ClusterProfiler package were applied to identify differentially expressed genes (DEGs) for each cluster in GSE210248 and GSE113439, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) were used for functional enrichment analysis of DEGs. Microenvironment Cell Populations counter (MCP counter) was applied to evaluate the immune cell infiltration. STRING was used to construct a protein-protein interaction (PPI) network of DEGs, followed by hub genes selection through Cytoscape software and Veen Diagram. RESULTS: Nineteen thousand five hundred seventy-six cells from 3 donors and 21,896 cells from 3 PAH patients remained for subsequent analysis after filtration. A total of 42 cell clusters were identified through UMAP and annotated by the SingleR package. 10 cell clusters with the top 10 cell amounts were selected for consequent analysis. Compared with the control group, the proportion of adipocytes and fibroblasts was significantly reduced, while CD8+ T cells and macrophages were notably increased in the PAH group. MCP counter revealed decreased distribution of CD8+ T cells, cytotoxic lymphocytes, and NK cells, as well as increased infiltration of monocytic lineage in PAH lung samples. Among 997 DEGs in GSE113439, module 1 with 68 critical genes was screened out through the MCODE plug-in in Cytoscape software. The top 20 DEGs in each cluster of GSE210248 were filtered out by the Cytohubba plug-in using the MCC method. Eventually, WDR43 and GNL2 were found significantly increased in PAH and identified as the hub genes after overlapping these DEGs from GSE210248 and GSE113439. CONCLUSION: WDR43 and GNL2 might provide novel insight into revealing the new molecular mechanisms and potential therapeutic targets for PAH.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Transcriptoma , Adipócitos , Linfócitos T CD8-Positivos , Bases de Dados Factuais , Biologia Computacional , Perfilação da Expressão Gênica
7.
J Am Chem Soc ; 145(42): 23361-23371, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844297

RESUMO

Molecular recognition lies at the heart of biological functions, which inspires lasting research in artificial host syntheses to mimic biomolecules that can recognize, process, and transport molecules with the highest level of complexity; nonetheless, the design principle and quantifying methodology of artificial hosts for multiple guests (≥4) remain a formidable task. Herein, we report two rhombic dodecahedral cages [(Zn/Fe)8Pd6-MOC-16], which embrace 12 adaptive pockets for multiguest binding with distinct conformational dynamics inherent in metal-center lability and are able to capture 4-24 guests to manifest a surprising complexity of binding scenarios. The exceptional high-order and hierarchical encapsulation phenomena suggest a wide host-guest dynamic-fit, enabling conformational adjustment and adaptation beyond the duality of induced-fit and conformational selection in protein interactions. A critical inspection of the host-guest binding events in solution has been performed by NMR and ESI-MS spectra, highlighting the importance of acquiring a reliable binding repertoire from different techniques and the uncertainty of quantifying the binding affinities of multiplying guests by an oversimplified method.


Assuntos
Biomimética , Conformação Molecular
8.
ACS Appl Mater Interfaces ; 15(34): 40569-40578, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590335

RESUMO

Developing self-powered smart wireless sensor networks by harvesting industrial environmental weak vibration energy remains a challenge and an impending need for enabling the widespread rollout of the industrial internet of things (IIoT). This work reports a self-powered wireless temperature and vibration monitoring system (WTVMS) based on a vibrational triboelectric nanogenerator (V-TENG) and a piezoelectric nanogenerator (PENG) for weak vibration energy collection and information sensing. Therein, the V-TENG can scavenge weak vibration energy down to 80 µm to power the system through a power management module, while the PENG is able to supply the frequency signal to the system by a comparison circuit. In an industrial vibration environment where the vibration frequency and amplitude are 20 Hz and 100 µm, respectively, the WTVMS can upload temperature and frequency information on the equipment to the cloud in combination with the narrowband IoT technology to realize real-time information monitoring. Furthermore, the WTVMS can work continuously for more than 2 months, during which the V-TENG can operate up to 100 million cycles, achieving ultrahigh stability and durability. By integrating weak vibration energy harvesting and active sensing technology, the WTVMS can be used for real-time online monitoring and early fault diagnosis of vibration equipment, which has great application prospects in industrial production, machinery manufacturing, traffic transportation, and intelligent IIoT.

9.
Circ J ; 87(11): 1625-1632, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37407487

RESUMO

BACKGROUND: Microvascular reperfusion following percutaneous coronary intervention (PCI) is associated with the prognosis of patients with ST-segment elevation myocardial infarction (STEMI). We investigated how plaque characteristics detected by optical coherence tomography (OCT) in STEMI patients affect the status of the microcirculation during PCI.Methods and Results: This retrospective, single-center study was a post hoc analysis basedon the multicenter SALVAGE randomized control trial (NCT03581513) that enrolled 629 STEMI patients, and finally we enrolled 235 patients who underwent PCI and pre-intervention OCT. Microvascular perfusion was evaluated using the Thrombolysis in Myocardial Infarction (TIMI) myocardial perfusion frame count (TMPFC). Patients were divided into 3 groups based on the change in TMPFC from before to after PCI: improving TMPFC (n=11; 4.7%), stable TMPFC (n=182; 77.4%), and worsening TMPFC group (n=42; 17.9%). The proportion of patients with a microcirculation dysfunction before reperfusion was 11.9%, which increased significantly by (P=0.079) 8.5% to 20.4% after reperfusion. Compared with plaque characteristics in the stable and worsening TMPFC groups, the improving TMPFC group had fewer thrombi (90.7% and 90.5% vs. 89.4%, respectively; P=0.018), a lower proportion of plaque rupture (66.5% and 66.3% vs. 54.5%, respectively; P=0.029), and a lower proportion of lipid-rich plaques (89.6% and 88.1% vs. 63.6%, respectively; P=0.036). CONCLUSIONS: PCI may not always achieve complete myocardial reperfusion. Thrombi, plaque rupture, and lipid-rich plaques detected by OCT can indicate microcirculation dysfunction during the reperfusion period.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Placa Aterosclerótica , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Angiografia Coronária , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Placa Aterosclerótica/diagnóstico por imagem , Lipídeos , Resultado do Tratamento
11.
Int J Radiat Biol ; 99(12): 1830-1840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37436484

RESUMO

PURPOSE: Astronauts exhibit neurological dysfunction during long-duration spaceflight, and the specific mechanisms may be closely related to the cumulative effects of these neurological injuries in the space radiation environment. Here, we investigated the interaction between astrocytes and neuronal cells exposed to simulated space radiation. MATERIALS AND METHODS: we selected human astrocytes (U87 MG) and neuronal cells (SH-SY5Y) to establish an experimental model to explore the interaction between astrocytes and neuronal cells in the CNS under simulated space radiation environment and the role of exosomes in the interactions. RESULTS: We found that γ-ray caused oxidative and inflammatory damage in human U87 MG and SH-SY5Y. The results of the conditioned medium transfer experiments showed that astrocytes exhibited a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory injury of CNS. We demonstrated that the number and size distribution of exosomes derived from U87 MG and SH-SY5Y cells were changed in response to H2O2, TNF-α or γ-ray treatment. Furthermore, we found that exosome derived from treated nerve cells influenced the cell viability and gene expression of untreated nerve cells, and the effect of exosomes was partly consistent with that of the conditioned medium. CONCLUSION: Our findings demonstrated that astrocytes showed a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory damage of CNS induced by simulated space radiation. Exosomes played an essential role in the interaction between astrocytes and neuronal cells exposed to simulated space radiation.


Assuntos
Exossomos , Neuroblastoma , Humanos , Astrócitos , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Neurônios/metabolismo , Exossomos/metabolismo
12.
Int Arch Occup Environ Health ; 96(7): 1009-1014, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37269342

RESUMO

OBJECTIVE: To explore the frequency and effect of extreme temperature on the non-accidental death rate in Hulunbuir, a Chinese ice city. METHODS: From 2014 to 2018, mortality data of residents residing in Hulunbuir City were collected. The lag and cumulative effects of extreme temperature conditions on non-accidental death and respiratory and circulatory diseases were analyzed by distributed lag non-linear models (DLNM). RESULTS: The risk of death was the highest during high-temperature conditions, the RR value was 1.111 (95% CI 1.031 ~ 1.198). The effect was severe and acute. The risk of death during extreme low-temperature conditions peaked on the fifth day, (RR 1.057; 95% CI 1.012 ~ 1.112), then decreased and was maintained for 12 days. The cumulative RR value was 1.289 (95% CI 1.045 ~ 1.589). Heat significantly influenced the incidence of non-accidental death in both men (RR 1.187; 95% CI 1.059-1.331) and women (RR 1.252; 95% CI 1.085-1.445). CONCLUSIONS: Regardless of the temperature effect, the risk of death in the elderly group (≥ 65 years) was significantly higher than that of the young group (0-64 years). High-temperature and low-temperature conditions can contribute to the increased number of deaths in Hulunbei. While high-temperature has an acute effect, low-temperature has a lagging effect. Elderly and women, as well as people with circulatory diseases, are more sensitive to extreme temperatures.


Assuntos
Doenças Cardiovasculares , Dinâmica não Linear , Masculino , Humanos , Feminino , Idoso , Temperatura , Estudos Longitudinais , Temperatura Baixa , Temperatura Alta , China/epidemiologia
13.
Am Heart J ; 263: 159-168, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327980

RESUMO

BACKGROUND: Plaque rupture (PR) and plaque erosion (PE) are 2 distinct, different, and most common culprit lesion morphologies responsible for acute coronary syndrome (ACS). However, the prevalence, distribution, and characteristics of peripheral atherosclerosis in ACS patients with PR vs PE has never been studied. The aim of this study was to assess peripheral atherosclerosis burden and vulnerability evaluated by vascular ultrasound in ACS patients with coronary PR vs PE identified by optical coherence tomography (OCT). METHODS: Between October 2018 and December 2019, 297 ACS patients who underwent preintervention OCT examination of the culprit coronary artery were enrolled. Peripheral ultrasound examinations of carotid, femoral, and popliteal arteries were performed before discharge. RESULTS: Overall, 265 of 297 (89.2%) patients had at least one atherosclerotic plaque in a peripheral arterial bed. Compared with coronary PE, patients with coronary PR had a higher prevalence of peripheral atherosclerotic plaques (93.4% vs 79.1%, P < .001), regardless of location: carotid, femoral, or popliteal arteries. The number of peripheral plaques per patient was significantly larger in the coronary PR group than coronary PE (4 [2-7] vs 2 [1-5], P < .001). Additionally, there was a greater prevalence of peripheral vulnerable characteristics including plaque surface irregularity, heterogeneous plaque, and calcification in patients with coronary PR vs PE. CONCLUSIONS: Peripheral atherosclerosis exists commonly in patients presenting with ACS. Patients with coronary PR had greater peripheral atherosclerosis burden and more peripheral vulnerability compared to those with coronary PE, suggesting that comprehensive evaluation of peripheral atherosclerosis and multidisciplinary cooperative management maybe necessary, especially in patients with PR. TRIAL REGISTRATION: clinicaltrials.gov (NCT03971864).

14.
ACS Appl Mater Interfaces ; 15(19): 23328-23336, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158268

RESUMO

Sound monitoring has been widely used in the field of the Internet of Things (IoT), in which the sensors are mainly powered by batteries with high power consumption and limited life. Here, a near-zero quiescent power sound wake-up and identification system based on a triboelectric nanogenerator (TENG) is proposed, in which the sound TENG (S-TENG) is used for ambient sound energy harvesting and system activation. Once the sound intensity is higher than 65 dB, the converted and stored electric energy by the S-TENG can wake up the system within 0.5 s. By integrating a deep learning technique, the system is used for identifying sound sources, such as drilling, child playing, dog barking, and street music. In the active mode, the sound signals are recorded by a microelectromechanical systems (MEMS) microphone and then sent to a remote computer for sound recognition through a wireless transmitter within 2.8 s. In the standby mode, the ambient sound is not enough to wake up the system, and the quiescent power consumption is only 55 nW. This work provides a triboelectric sensor-based ultralow quiescent power sound wake-up system, which has shown excellent application prospects in smart homes, unmanned monitoring, and the Internet of Things.

16.
BMC Public Health ; 23(1): 313, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774500

RESUMO

BACKGROUND: Visceral adiposity index (VAI) has been recognized as a reliable indicator for visceral adiposity. However, it remains largely unexplored on its association with fasting plasma glucose (FPG). The current study aims to explore the association between VAI and FPG using a representative dataset. METHODS: A cross-sectional study was carried out based on the dataset from National Health and Nutrition Examination Survey (NHANES) 2017-2020. Univariate and Multiple linear regression analysis were performed to explore the relationship between VAI and FPG. Generalized additive model (GAM) and smooth curve fitting analysis were performed to explore the nonlinear relationship between VAI and FPG. Receiver operating characteristic (ROC) analysis was used to evaluate the predictive value of VAI for FPG elevation. RESULTS: A total of 4437 participants with complete data were finally included in the research. Individuals were divided into 4 quartiles according to the calculated VAI value: Q1 (VAI<0.69), Q2 (0.69 ≤ VAI < 1.18), Q3 (1.18 ≤ VAI < 2.02) and Q4 (VAI ≥ 2.02). FPG significantly increased with the increasing VAI quartile. Multiple linear regression analysis showed VAI was independently positively associated with FPG after adjusting confounding factors. As a continuous variable, an increase of one unit in VAI was correlated with 0.52 mmol/L (95% CI: 0.41-0.63, p < 0.0001) higher FPG level. As a categorical variable, 4th VAI quartile group was related to 0.71 mmol/L (95% CI: 0.47-0.95, p < 0.001) higher FPG level compared with 1st VAI group. GAM and smooth curve fitting analysis identified the non-linear relationship between VAI and FPG, and 4.02 was identified as the inflection point using two-piecewise linear regression. The positive association between VAI and FPG existed when VAI was lower (ß = 0.73, p < 0.0001) and higher than 4.02 (ß = 0.23, p = 0.0063). ROC analysis indicated VAI has a good predictive value for FPG elevation (AUC = 0.7169, 95% CI: 0.6948-0.7389), and the best threshold of VAI was 1.4315. CONCLUSION: VAI was an independently risk indicator for FPG, and VAI was nonlinearly positively associated with FPG. VAI had a good predictive value for elevated FPG. VAI might become a useful indicator for risk assessment and treatment of hyperglycemia in clinical practice.


Assuntos
Adiposidade , Glicemia , Humanos , Fatores de Risco , Inquéritos Nutricionais , Estudos Transversais , Jejum , Gordura Intra-Abdominal , Índice de Massa Corporal , Obesidade Abdominal/diagnóstico , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/complicações
17.
JACC Cardiovasc Imaging ; 16(4): 521-532, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36648054

RESUMO

BACKGROUND: Myocardial infarction with nonobstructive coronary artery (MINOCA) is a heterogeneous syndrome caused by different pathophysiologic mechanisms. There is limited evidence regarding prognosis of patients with MINOCA caused by different mechanisms. OBJECTIVES: The present study aimed to assess the underlying mechanisms of MINOCA by optical coherence tomography (OCT) and to correlate with clinical outcomes. METHODS: Patients with MINOCA were divided into 2 groups based on OCT findings: atherosclerotic MINOCA (Ath-MINOCA) and nonatherosclerotic MINOCA (non-Ath-MINOCA). Major adverse cardiac events (MACE) were defined as cardiac death, nonfatal MI, target lesion revascularization, stroke, and rehospitalization for unstable or progressive angina. RESULTS: Among 7,423 patients with a clinical diagnosis of MI who underwent angiography, 190 of 294 MINOCA were studied using OCT. The causes of Ath-MINOCA (n = 99, 52.1%) were plaque erosion (n = 64, 33.7%), plaque rupture (n = 33, 17.4%), and calcified nodule (n = 2, 1.1%) whereas the causes of non-Ath-MINOCA (n = 91, 47.9%) were spontaneous coronary artery dissection (n = 8, 4.2%), coronary spasm (n = 9, 4.7%), and unclassified cause (n = 74, 38.9%). The 1-year MACE was 15.3% for Ath-MINOCA vs 4.5% for non-Ath-MINOCA (P = 0.015). An atherosclerotic cause was an independent predictor of MACE (HR: 5.36 [95% CI: 1.08-26.55]; P = 0.040), mainly driven by target lesion revascularization and rehospitalization, despite the composite endpoint including cardiac death and MI showing no difference. CONCLUSIONS: OCT identified a cause in 61.1% of MINOCA, in which Ath-MINOCA represents an important and distinct MINOCA subset. Ath-MINOCA were more common and associated with worse outcomes. (Incidence Rate of Heart Failure After Acute Myocardial Infarction With Optimal Treatment; NCT03297164; Paradigm Shift in the Treatment of Patients With ACS; NCT02041650).


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , MINOCA , Tomografia de Coerência Óptica/efeitos adversos , Angiografia Coronária/efeitos adversos , Valor Preditivo dos Testes , Infarto do Miocárdio/etiologia , Prognóstico , Morte , Vasos Coronários/patologia , Fatores de Risco , Doença da Artéria Coronariana/patologia
18.
JACC Asia ; 2(4): 460-472, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36339358

RESUMO

Background: Artificial intelligence enables simultaneous evaluation of plaque morphology and computational physiology from optical coherence tomography (OCT). Objectives: This study sought to appraise the predictive value of major adverse cardiovascular events (MACE) by combined plaque morphology and computational physiology. Methods: A total of 604 patients with acute coronary syndrome who underwent OCT imaging in ≥1 nonculprit vessel during index coronary angiography were retrospectively enrolled. A novel morphologic index, named the lipid-to-cap ratio (LCR), and a functional parameter to evaluate the physiologic significance of coronary stenosis from OCT, namely, the optical flow ratio (OFR), were calculated from OCT, together with classical morphologic parameters, like thin-cap fibroatheroma (TCFA) and minimal lumen area. Results: The 2-year cumulative incidence of a composite of nonculprit vessel-related cardiac death, cardiac arrest, acute myocardial infarction, and ischemia-driven revascularization (NCV-MACE) at 2 years was 4.3%. Both LCR (area under the curve [AUC]: 0.826; 95% CI: 0.793-0.855) and OFR (AUC: 0.838; 95% CI: 0.806-0.866) were superior to minimal lumen area (AUC: 0.618; 95% CI: 0.578-0.657) in predicting NCV-MACE at 2 years. Patients with both an LCR of >0.33 and an OFR of ≤0.84 had significantly higher risk of NCV-MACE at 2 years than patients in whom at least 1 of these 2 parameters was normal (HR: 42.73; 95% CI: 12.80-142.60; P < 0.001). The combination of thin-cap fibroatheroma and OFR also identified patients at higher risk of future events (HR: 6.58; 95% CI: 2.83-15.33; P < 0.001). Conclusions: The combination of LCR with OFR permits the identification of a subgroup of patients with 43-fold higher risk of recurrent cardiovascular events in the nonculprit vessels after acute coronary syndrome.

19.
Biomed Opt Express ; 13(7): 3922-3938, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991920

RESUMO

Plaque erosion is one of the most common underlying mechanisms for acute coronary syndrome (ACS). Optical coherence tomography (OCT) allows in vivo diagnosis of plaque erosion. However, challenge remains due to high inter- and intra-observer variability. We developed an artificial intelligence method based on deep learning for fully automated detection of plaque erosion in vivo, which achieved a recall of 0.800 ± 0.175, a precision of 0.734 ± 0.254, and an area under the precision-recall curve (AUC) of 0.707. Our proposed method is in good agreement with physicians, and can help improve the clinical diagnosis of plaque erosion and develop individualized treatment strategies for optimal management of ACS patients.

20.
Oxid Med Cell Longev ; 2022: 7845503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707273

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor involved in maintaining redox balance and activates the expression of downstream antioxidant enzymes. Nrf2 has received wide attention considering its crucial role in oxidative and electrophilic stress. Large amounts of studies have demonstrated the protective role of Nrf2 activation in various pulmonary hypertension (pH) models. Additionally, various kinds of natural phytochemicals acting as Nrf2 activators prevent the development of pH and provide a novel and promising therapeutic insight for the treatment of pH. In the current review, we give a brief introduction of Nrf2 and focus on the role and mechanism of Nrf2 in the pathophysiology of pH and then review the relevant research of Nrf2 agonists in pH in both experimental research and clinical trials.


Assuntos
Hipertensão Pulmonar , Fator 2 Relacionado a NF-E2 , Antioxidantes/metabolismo , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA