RESUMO
BACKGROUND: The incidence of inflammatory bowel disease (IBD) is on the rise in developing countries, and investigating the underlying mechanisms of IBD is essential for the development of targeted therapeutic interventions. Interferon regulatory factor 7 (IRF7) is known to exert pro-inflammatory effects in various autoimmune diseases, yet its precise role in the development of colitis remains unclear. METHODS: We analyzed the clinical significance of IRF7 in ulcerative colitis (UC) by searching RNA-Seq databases and collecting tissue samples from clinical UC patients. And, we performed dextran sodium sulfate (DSS)-induced colitis modeling using WT and Irf7-/- mice to explore the mechanism of IRF7 action on colitis. RESULTS: In this study, we found that IRF7 expression is significantly reduced in patients with UC, and also demonstrated that Irf7-/- mice display heightened susceptibility to DSS-induced colitis, accompanied by elevated levels of colonic and serum pro-inflammatory cytokines, suggesting that IRF7 is able to inhibit colitis. This increased susceptibility is linked to compromised intestinal barrier integrity and impaired expression of key molecules, including Muc2, E-cadherin, ß-catenin, Occludin, and Interleukin-28A (IL-28A), a member of type III interferon (IFN-III), but independent of the deficiency of classic type I interferon (IFN-I) and type II interferon (IFN-II). The stimulation of intestinal epithelial cells by recombinant IL-28A augments the expression of Muc2, E-cadherin, ß-catenin, and Occludin. The recombinant IL-28A protein in mice counteracts the heightened susceptibility of Irf7-/- mice to colitis induced by DSS, while also elevating the expression of Muc2, E-cadherin, ß-catenin, and Occludin, thereby promoting the integrity of the intestinal barrier. CONCLUSION: These findings underscore the pivotal role of IRF7 in preserving intestinal homeostasis and forestalling the onset of colitis.
Assuntos
Colite , Sulfato de Dextrana , Fator Regulador 7 de Interferon , Mucosa Intestinal , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Humanos , Colite/patologia , Colite/metabolismo , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Camundongos Knockout , Interleucinas/metabolismo , Modelos Animais de Doenças , Camundongos , Masculino , Citocinas/metabolismo , Interferon lambdaRESUMO
INTRODUCTION: Intestinal immune dysregulation is strongly linked to the occurrence and formation of tumors. RING finger protein 128 (RNF128) has been identified to play distinct immunoregulatory functions in innate and adaptive systems. However, the physiological roles of RNF128 in intestinal inflammatory conditions such as colitis and colorectal cancer (CRC) remain controversial. OBJECTIVES: To elucidate the function and mechanism of RNF128 in colitis and CRC. METHODS: Animal models of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced CRC were established in WT and Rnf128-deficient mice and evaluated by histopathology. Co-immunoprecipitation and ubiquitination analyses were employed to investigate the role of RNF128 in IL-6-STAT3 signaling. RESULTS: RNF128 was significantly downregulated in clinical CRC tissues compared with paired peritumoral tissues. Rnf128-deficient mice were hypersusceptible to both colitis induced by DSS and CRC induced by AOM/DSS or APC mutation. Loss of RNF128 promoted the proliferation of CRC cells and STAT3 activation during the early transformative stage of carcinogenesis in vivo and in vitro when stimulated by IL-6. Mechanistically, RNF128 interacted with the IL-6 receptor α subunit (IL-6Rα) and membrane glycoprotein gp130 and mediated their lysosomal degradation in ligase activity-dependent manner. Through a series of point mutations in the IL-6 receptor, we identified that RNF128 promoted K48-linked polyubiquitination of IL-6Rα at K398/K401 and gp130 at K718/K816/K866. Additionally, blocking STAT3 activation effectively eradicated the inflammatory damage of Rnf128-deficient mice during the transformative stage of carcinogenesis. CONCLUSION: RNF128 attenuates colitis and colorectal tumorigenesis by inhibiting IL-6-STAT3 signaling, which sheds novel insights into the modulation of IL-6 receptors and the inflammation-to-cancer transition.
RESUMO
Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C. albicans infection remains uncertain. This study reveals that the gene expression of AIM2 is induced in human and mouse innate immune cells or tissues after C. albicans infection. Furthermore, compared to their wild-type (WT) counterparts, Aim2-/- mice surprisingly exhibit resistance to C. albicans infection, along with reduced inflammation in the kidneys post-infection. The resistance of Aim2-/- mice to C. albicans infection is not reliant on inflammasome or type I interferon production. Instead, Aim2-/- mice display lower levels of apoptosis in kidney tissues following infection than WT mice. The deficiency of AIM2 in macrophages, but not in dendritic cells, results in a phenocopy of the resistance observed in Aim2-/- mice against C. albican infection. The treatment of Clodronate Liposome, a reagent that depletes macrophages, also shows the critical role of macrophages in host defense against C. albican infection in Aim2-/- mice. Furthermore, the reduction in apoptosis is observed in Aim2-/- mouse macrophages following infection or treatment of DNA from C. albicans in comparison with controls. Additionally, higher levels of AKT activation are observed in Aim2-/- mice, and treatment with an AKT inhibitor reverses the host resistance to C. albicans infection. The findings collectively demonstrate that AIM2 exerts a negative regulatory effect on AKT activation and enhances macrophage apoptosis, ultimately compromising host defense against C. albicans infection. This suggests that AIM2 and AKT may represent promising therapeutic targets for the management of fungal infections.
Assuntos
Apoptose , Candida albicans , Candidíase , Proteínas de Ligação a DNA , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/metabolismo , Candidíase/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Inflamassomos/metabolismo , Imunidade Inata , Rim/patologia , Rim/metabolismo , Rim/microbiologiaRESUMO
IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.
Assuntos
Autofagia , Candida albicans , Candidíase , Fator Regulador 7 de Interferon , Lectinas Tipo C , Macrófagos , Camundongos Knockout , Fagocitose , Receptores de Superfície Celular , Serina-Treonina Quinases TOR , Animais , Camundongos , Fagocitose/imunologia , Autofagia/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Candidíase/imunologia , Candida albicans/imunologia , Candida albicans/fisiologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/imunologia , Macrófagos/imunologia , Humanos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Endogâmicos C57BL , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Transdução de Sinais/imunologiaRESUMO
Candida albicans is a common opportunistic pathogenic fungus. The innate immune system provides the first-line host defense against fungal infection. Innate immune receptors and downstream molecules have been shown to play various roles during fungal infection. The innate immune receptor MDA5, encoded by the gene Ifih1, enhances host resistance against viral and Aspergillus fumigatus infection by inducing the production of interferons (IFNs). However, the role of MDA5 in C. albicans infection is still unclear. Here, we found that the gene expression levels of IFIH1 were significantly increased in innate immune cells after C. albicans stimulation through human bioinformatics analysis or mouse experiments. Through in vivo study, MDA5 was shown to enhance host susceptibility to C. albicans infection independent of IFN production. Instead, MDA5 exerted its influence on macrophages and kidneys by modulating the expression of Noxa, Bcl2, and Bax, thereby promoting apoptosis. Additionally, MDA5 compromised killing capabilities of macrophage by inhibition iNOS expression. The introduction of the apoptosis inducer PAC1 further impaired macrophage functions, mimicking the enhancing effect of MDA5 on C. albicans infection. Furthermore, the administration of macrophage scavengers increased the susceptibility of Ifih1-/- mice to C. albicans. The founding suggests that MDA5 promote host susceptibility to invasive C. albicans by enhancing cell apoptosis and compromising macrophage functions, making MDA5 a target to treat candidiasis.
Assuntos
Candida albicans , Candidíase , Animais , Humanos , Camundongos , Apoptose , Candida albicans/fisiologia , Helicase IFIH1 Induzida por Interferon , Macrófagos , FagocitoseRESUMO
Colorectal cancer (CRC) is a prevalent cause of cancer and mortality on a global scale. SNAI1, a member of the zinc finger transcription superfamily, is a significant contributor to embryonic development and carcinogenesis through the process of epithelial-mesenchymal transition (EMT). While prior research utilizing CRC cells and clinical data has demonstrated that SNAI1 facilitates CRC progression through diverse mechanisms, the precise manner in which epithelial SNAI1 regulates CRC development in vivo remains unclear. In this study, colitis and colitis-associated CRC were induced through the use of intestinal epithelium-specific Snai1 knockout (Snai1 cKO) mice. Our findings indicate that Snai1 cKO mice exhibit a reduced susceptibility to acute colitis and colitis-associated CRC compared to control mice. Western-blot analysis of colon tissues revealed that Snai1 cKO mice exhibited a higher overall apoptosis level during tumor formation than control mice. No significant differences were observed in the activation of the classical p53 signaling pathway. However, Snai1 cKO mice exhibited weakened EMT and Wnt/ß-catenin pathway activation. In summary, our study has provided evidence in vivo that the intestinal epithelial SNAI1 protein suppresses apoptosis, amplifies the EMT, and activates the Wnt/ß-catenin signaling pathways in both early and late phases of CRC formation, thus promoting the development and progression of colitis-associated CRC.
Assuntos
Colite , Neoplasias Colorretais , Animais , Feminino , Camundongos , Gravidez , beta Catenina/genética , Colite/complicações , Colite/genética , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal , Via de Sinalização WntRESUMO
China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.
Assuntos
Metais Terras Raras , Ítrio , Humanos , Animais , Camundongos , Masculino , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Espécies Reativas de Oxigênio , Apoptose , Autofagia , DNA Mitocondrial , Genitália MasculinaRESUMO
Interferon regulatory factor 7 (IRF7), a member of the interferon regulatory factors (IRFs) family, is located downstream of the pattern recognition receptors (PRRs)-mediated signaling pathway and is essential for the production of type I interferon (IFN-I). Activation of IRF7 inhibits various viral and bacterial infections and suppresses the growth and metastasis of some cancers, but it may also affect the tumor microenvironment and promote the development of other cancers. Here, we summarize recent advances in the role of IRF7 as a multifunctional transcription factor in inflammation, cancer and infection by regulating IFN-I production or IFN-I-independent signaling pathways.
Assuntos
Fator Regulador 7 de Interferon , Interferon Tipo I , Neoplasias , Humanos , Inflamação , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Microambiente TumoralRESUMO
Disorders of gut microbiota have been closely linked to the occurrence of various intestinal diseases including colitis and colorectal cancer (CRC). Specifically, the production of beneficial bacteria and intestinal metabolites may slow the development of some intestinal diseases. Recently, it has been proposed that pattern recognition receptors (PRRs) not only recognize pathogens and initiate inflammatory signal transduction to induce immune responses but also influence the composition of intestinal microorganisms. However, the mechanisms through which PRRs regulate gut microbiota in the setting of colitis and CRC have rarely been systematically reviewed. Therefore, in this paper, we summarize recent advances in our understanding of how PRRs shape gut microbiota and how this influences the development of colitis and CRC.