Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Chromatogr A ; 1727: 465011, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38776604

RESUMO

Chiral enantiomers, especially the enantiomers of chiral drugs often exhibit different pharmacological activity, metabolism and toxicity, thus it is of great research significance to scientifically and reasonably develop single chiral drugs with low toxicity and high efficiency. Among them, high performance liquid chromatographic techniques based on chiral stationary phases (CSPs) has become one of the most attractive methods used to evaluate the enantiomeric purity of single-enantiomers compound of pharmacological relevance. In this work, pillar[5]arene functionalized with L- and D-histidine, respectively, were modified on the surface of mesoporous silica as novel chiral stationary phases called L/DHis-BP5-Sil. Notably, L/D-histidine had the characteristics of low steric hindrance and easy derivatization. Although the π-π interaction of imidazole group was weaker than that of benzene ring, the benzene ring bonding imidazole-conjugated ring in the structure produced better enantioseparation effect. The results showed that L/DHis-BP5-Sil can separate a variety of complex structural enantiomers with excellent reproducibility, thermal stability and separation performance. Hence, the unique advantage of the highly selective separation of L/DHis-BP5-Sil provides new insights into the enantioseparation field.


Assuntos
Calixarenos , Histidina , Dióxido de Silício , Estereoisomerismo , Dióxido de Silício/química , Calixarenos/química , Histidina/química , Cromatografia Líquida de Alta Pressão/métodos , Porosidade , Reprodutibilidade dos Testes , Compostos de Amônio Quaternário/química
2.
Anal Methods ; 16(22): 3551-3561, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780040

RESUMO

Tetracycline (TC) as a broad-spectrum antibiotic, is widely used in the prevention and treatment of various bacterial diseases. However, its abuse in the livestock industry may lead to interference in human microecology, thereby causing various side effects. In this study, deep eutectic solvents (DESs) were synthesized using L-(-)-threonine (L-(-)-Thr) and cerium nitrate hexahydrate (Ce(NO3)3·6H2O), and later lanthanum nitrate hexahydrate (La(NO3)3·6H2O) was doped to synthesize La-Ce hybrid nanorods. These nanorods can be used for the determination of TC with high sensitivity and selectivity by the colorimetric method. This approach has a linear response to TC between 0.05 µM and 10 µM, with a detection limit of 0.016 µM. In this system, good dispersion provides the substance with a distinct peroxidase activity, which is used to create a colorimetric sensor for detecting TC. Mechanism studies show that the superoxide radical generated by the La-Ce nanomembrane plays a key role in peroxidase catalysis. Finally, the practicality of the method was verified by the determination of TC in food products (milk, pork and honey), which demonstrated that a good recovery rate can be obtained (91.4-102%).


Assuntos
Cério , Colorimetria , Lantânio , Leite , Nanotubos , Tetraciclina , Colorimetria/métodos , Nanotubos/química , Lantânio/química , Cério/química , Tetraciclina/análise , Tetraciclina/química , Leite/química , Animais , Mel/análise , Solventes Eutéticos Profundos/química , Análise de Alimentos/métodos , Limite de Detecção , Contaminação de Alimentos/análise , Antibacterianos/análise , Suínos
3.
J Chromatogr A ; 1722: 464889, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598894

RESUMO

In this paper, three imidazole- and C18- bifunctional silica stationary phases (Sil-Im-C18) were prepared by adjusting introduction interval of octadecyltrichlorosilane (ODS) and 3-imidazol-1-ylpropyl(trimethoxy)silane (TMPImS), which can be used for reversed-phase liquid chromatography (RPLC) and ion exchange chromatography (IEC) with adjustable performance. The successful preparation of Sil-Im-C18 were confirmed by the characterizations of elemental analysis, infrared spectroscopy (FTIR) and contact angle (CA). Chromatographic performance of Sil-Im-C18 were evaluated by the separation of Tanaka test mixture, alkylbenzenes, linear PAHs and a set of analytes with different properties (uracil, phenol, 1,2-dinitrobenzene and naphthalene), and compared with commonly used C18 column. It was found that the chromatographic performance of Sil-Im-C18 changed significantly with the difference in bonding amount of imidazole and C18. Sil-Im-C18 demonstrated the excellent separation performance towards polycyclic aromatic hydrocarbons (PAHs), phenylesters, phenylamines, phenols and inorganic anions, and notably, nucleobases and nucleosides can be separated using pure water as mobile phases. The van Deemter plot showed that the column efficiency of Sil-Im-C18-3 was 64,933 plate·m-1 for naphthalene, indicated that Sil-Im-C18 was reasonably chromatographic columns. The RSD values of retention time were 0.22 %-0.61 % for 10 needles alkylbenzenes injected continuously at 50 °C to investigate thermal stability and repeatability, all the fluctuations of k of naphthalene were less than 2.3 % for Sil-Im-C18-1 during flushing 24 h with the mobile phase at different pH values (pH = 3 and 8), the retention time of alkylbenzenes were almost same for Sil-Im-C18-1 at different time, the RSD values of retention time of alkylbenzenes were 0.45 %-2.28 % for two batches Sil-Im-C18-1, revealing the excellent repeatability, thermal stability, durability and reproducibility of Sil-Im-C18, and implying a commercial prospect.


Assuntos
Cromatografia de Fase Reversa , Imidazóis , Hidrocarbonetos Policíclicos Aromáticos , Dióxido de Silício , Imidazóis/química , Dióxido de Silício/química , Cromatografia de Fase Reversa/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/química , Silanos/química , Cromatografia por Troca Iônica/métodos
4.
J Chromatogr A ; 1720: 464799, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38458140

RESUMO

Chiral pillar[5]arene-based mesoporous silica, an emerging class of chiral structure, possesses excellent characteristics such as abundant chiral active sites, encapsulated cavity and excellent chiral modification, which make them a promising candidate as new chiral stationary phases (CSPs) in enantioseparation. In this study, two imidazole-containing (S)-1-(4-phenyl-1H-imidazol-2-yl)ethanamine and (S)-Histidinol were respectively modified to bromoethoxy pillar[5]arene-bonded silica to construct new chiral stationary phases (sPIE-BP5-Sil and sHol-BP5-Sil) for the separation and analysis of enantiomers. The separation conditions such as mobile phase composition, flow rate and temperature were optimized. Under optimal conditions, both sPIE-BP5-Sil and sHol-BP5-Sil showed good separation performance for different types of enantiomers. Interestingly, sPIE-BP5-Sil and sHol-BP5-Sil showed better enantioselectivity for chiral aromatic compounds and chiral aliphatic compounds, respectively. This enantioseparation result was closely related to the presence of additional aromatic rings and abundant hydroxyl groups in the side chains of the two chiral groups. In addition, the enantioseparation process was further studied by molecular docking simulation. Therefore, this work provided a new strategy for the preparation and application of imidazolyl-derived pillar[5]arene-based chiral stationary phases, which can be efficiently used for screening and separating enantiomers.


Assuntos
Dióxido de Silício , Cromatografia Líquida de Alta Pressão , Dióxido de Silício/química , Simulação de Acoplamento Molecular , Estereoisomerismo , Temperatura
5.
Ultrason Sonochem ; 102: 106761, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219550

RESUMO

In China, Jiang Fructus aurantii (JFA) has attracted increasing interest as a famous traditional herbal medicine and valuable economic food for its valuable medicinal and industrial properties. In the current work, contrasted with conventional extraction techniques, natural flavonoids from JFA (naringin and neohesperidin) were extracted with remarkable effectiveness utilizing a sustainable deep eutectic solvents combined ultrasonic-assisted extraction (DESs-UAE) protocol. The optimal extraction capacity can be achieved by mixing 30 % water with a molar ratio of 1:3 for choline chloride and ethylene glycol, as opposed to the classical extraction solvents of 95 % ethanol, methanol, and water. Moreover, the DESs-UAE extraction programs were also systematically optimized employing Box-Behnken design (BBD) trials, and the eventual findings suggested that the best parameters were a 27 % water content in DES, a 16 mL/g liquid-solid ratio, a 72 min extraction time, and a 62 °C extraction temperature, along with the corresponding greatest contents of NAR (48.18 mg/g) and NEO (34.50 mg/g), respectively. Notably, by comparison with the pre-optimization data, the optimized DES extraction efficiency of flavonoids is markedly higher. Thereafter, the characterization of the solvents before and after extraction, as well as the differences between the four extraction solvent extracts, were compared using the FT-IR analyses. Furthermore, SEM results suggested that the penetration and erosion abilities of the plant cell wall of DES-1 were stronger than those of the other three traditional solvents, thus allowing more release of flavonoid compounds. In conclusion, the present research develops a straightforward, sustainable, and exceedingly efficient approach for the extraction of bioactive flavonoids from JFA, which has the potential to facilitate the efficient acquisition of active ingredients from TCM.


Assuntos
Solventes Eutéticos Profundos , Flavonoides , Flavonoides/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrassom , Solventes , Água , Extratos Vegetais
6.
Anal Chem ; 96(5): 2173-2182, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261544

RESUMO

Enantioselective discrimination of chiral molecules is essential in chemistry, biology, and medical science due to the configuration-dependent activities of enantiomers. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer by using nanomaterials with outstanding performance are of great significance. Herein, blue- and green-emitting chiral silicon nanoparticles named bSiNPs and gSiNPs, respectively, with excellent water solubility, salt resistance, pH stability, photobleaching resistance, biocompatibility, and ability to promote soybean germination, were fabricated in a facile one-step method. Especially, chiral gSiNPs presented excellent fluorescence recognition ability for glutamic acid enantiomers within 1 min, and the enantiomeric recognition difference factor was as high as 9.0. The mechanism for enantiomeric fluorescence recognition was systematically explored by combining the fluorescence spectra with density functional theory (DFT) calculation. Presumably, the different Gibbs free energy and hydrogen-bonding interaction of the chiral recognition module with glutamic acid enantiomers mainly contributed to the difference in the fluorescence signals. Most noteworthy was the fact that the chiral gSiNPs can showcase not only the ability to recognize l- and d-glutamic acids in living cells but also the test strips fabricated by soaking gSiNPs can be applied for d-glutamic acid visual detection. As a result, this study provided insights into the design of multifunctional chiral sensing nanoplatforms for enantiomeric detection and other applications.


Assuntos
Ácido Glutâmico , Nanopartículas , Silício , Estereoisomerismo , Aminoácidos/química , Nanopartículas/química , Corantes
7.
Anal Bioanal Chem ; 416(4): 971-981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38082135

RESUMO

Enzyme activity assays play a crucial role in numerous fields, including biotechnology, the food industry, and clinical diagnostics. Lipases are particularly important enzymes due to their widespread use in lipid metabolism and esterification reactions. Here, we present a pioneering method for the sensitive and selective determination of lipase activity using green carbon dots (G-CDs) for first time. G-CDs are a fascinating class of carbon nanomaterials with unique optical properties and biocompatibility, making them ideal candidates for enzyme activity assays. This approach eliminates the need for traditional fluorophores or chromogenic substrates, reducing costs, fast response time (1 min), and environmental impact with a quantum yield (QY) of 7.42%. As designed, the G-CDs fluorescent probe turn-on demonstrated a reliable linear detection range from 0 to 9 mg/mL under ideal conditions, with detection limit of 0.01 mg/mL and limit of quantification (LOQ) of 0.045 mg/mL, respectively. Furthermore, the G-CDs system was thoroughly evaluated in human serum samples, showing recoveries ranging from 100.0 to 105.0%. These findings highlight the promising applicability of the G-CDs probe for lipase detection, yielding highly favorable results.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Humanos , Corantes Fluorescentes/química , Carbono/química , Lipase , Pontos Quânticos/química , Espectrometria de Fluorescência
8.
J Colloid Interface Sci ; 658: 188-198, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100975

RESUMO

The escalating prevalence of cephalosporin antibiotics in wastewater poses a serious threat to public health and environmental balance. Thus, it is crucial to develop effective methods for removing cephalosporin antibiotics from water sources. Herein, we propose the use of AuPtRh trimetallic nanoparticles supported on Ti3C2MXene as a photocatalyst for the degradation of cephalosporin antibiotics. Initially, AuPtRh nanoparticles were uniformly grown onto Ti3C2MXene sheets using one-step reduction technique. The prepared AuPtRh/Ti3C2MXene exhibited a complete degradation of cefixime and ceftriaxone sodium, while an impressive degradation efficiency of 91.58 % for cephalexin was achieved after 60 min of exposure to visible light, surpassing the performance of its individual AuPtRh nanoparticles and Ti3C2MXene. The enhanced photoactivity of AuPtRh/Ti3C2MXene was resulted from improved light absorption capacity and efficient generation, separation, and transfer of charge carriers driven by the formation of heterojunction between AuPtRh and Ti3C2MXene. Electron paramagnetic resonance and radicals trapping experiments results revealed that •O2- and h+ are the principal reactive species governing the degradation of cephalosporins. The photocatalyst exhibited excellent stability and could be reused four times without significant loss in efficiency. Our study highlights the potential of MXene composites for environmental remediation, offering insights into designing sustainable AuPtRh/Ti3C2MXene photocatalyst for water pollutant degradation.


Assuntos
Cefalosporinas , Nanopartículas , Nitritos , Elementos de Transição , Titânio , Cefalexina , Luz
9.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069368

RESUMO

Lung cancer is a malignant tumor with one of the highest morbidity and mortality rates in the world. Approximately 80-85% of lung cancer is diagnosed as non-small lung cancer (NSCLC), and its 5-year survival rate is only 21%. Cisplatin is a commonly used chemotherapy drug for the treatment of NSCLC. Its efficacy is often limited by the development of drug resistance after long-term treatment. Therefore, determining how to overcome cisplatin resistance, enhancing the sensitivity of cancer cells to cisplatin, and developing new therapeutic strategies are urgent clinical problems. Z-ligustilide is the main active ingredient of the Chinese medicine Angelica sinensis, and has anti-tumor activity. In the present study, we investigated the effect of the combination of Z-ligustilide and cisplatin (Z-ligustilide+cisplatin) on the resistance of cisplatin-resistant lung cancer cells and its mechanism of action. We found that Z-ligustilide+cisplatin decreased the cell viability, induced cell cycle arrest, and promoted the cell apoptosis of cisplatin-resistant lung cancer cells. Metabolomics combined with transcriptomics revealed that Z-ligustilide+cisplatin inhibited phospholipid synthesis by upregulating the expression of phospholipid phosphatase 1 (PLPP1). A further study showed that PLPP1 expression was positively correlated with good prognosis, whereas the knockdown of PLPP1 abolished the effects of Z-ligustilide+cisplatin on cell cycle and apoptosis. Specifically, Z-ligustilide+cisplatin inhibited the activation of protein kinase B (AKT) by reducing the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3). Z-ligustilide+cisplatin induced cell cycle arrest and promoted the cell apoptosis of cisplatin-resistant lung cancer cells by inhibiting PLPP1-mediated phospholipid synthesis. Our findings demonstrate that the combination of Z-Ligustilide and cisplatin is a promising approach to the chemotherapy of malignant tumors that are resistant to cisplatin.


Assuntos
Cisplatino , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , 4-Butirolactona/farmacologia , Fosfolipídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
10.
Anal Methods ; 15(45): 6286-6293, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37965679

RESUMO

A novel C4-modified bipyridinium stationary phase (Sil-DPC4) was prepared and characterized by elemental analysis (EA) and Fourier transform infrared spectrometry (FT-IR) and further investigated for multi-mode liquid chromatography. The chromatographic performances of Sil-DPC4 were evaluated by reversed-phase chromatography using polycyclic aromatic hydrocarbons (PAHs), phenylamines and phenols, hydrophilic interaction chromatography using nucleosides and nucleobases, and ion exchange chromatography using inorganic ions and organic ions. The effects of the acetonitrile content, salt concentration and pH value of the mobile phase on the retention of Sil-DPC4 were also investigated. Sil-DPC4 showed multiple retention mechanisms including π-π, hydrophobic and electrostatic interactions for PAHs, phenylamines and phenols compared with a dipyridine modified silica stationary phase (Sil-DP) and C18 in RPLC, faster separation for nucleosides and nucleobases compared with Sil-DP, and higher hydrophilicity than HILIC in HILIC, and stronger retention and better separation ability for inorganic ions and organic ions in comparison to Sil-DP in IEC. Besides, Sil-DPC4 was used successfully to detect iodide in artificial seawater and had the potential to analyze radionuclide iodine-131 in seawater. In conclusion, multiple retention mechanisms of Sil-DPC4 could make it have potential applications in complex samples.

11.
Exploration (Beijing) ; 3(3): 20220144, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37933382

RESUMO

Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.

12.
Se Pu ; 41(10): 823-824, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37884463
13.
Se Pu ; 41(10): 825-834, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37875405

RESUMO

Chromatographic column is the core of chromatographic separation, and chromatographic separation material is considered the soul of the chromatographic column. The type and characteristics of the chromatographic separation material directly determine the separation mode and performance of chromatographic columns. The development and preparation of separation materials with novel structures and good separation performance is an ongoing hotspot in chromatography research. Given rapid developments in nanoscience and technology, nanomaterials with unique surface functional groups and large specific surface areas have attracted extensive attention and great interest from researchers in the field of separation science. Carbon dots (CDs), a new type of zero-dimensional fluorescent carbon nanomaterials, have been widely used in bioimaging, light-emitting diodes, sensing, catalysis, drug delivery, and other applications since they were first reported in 2004. These nanomaterials present several advantages over other types of separation materials, including a simple preparation process, low toxicity, easy functionalization, excellent biocompatibility, and photobleaching resistance. In addition, compared with traditional carbon nanomaterials such as graphene and carbon nanotubes, CDs have abundant surface functional groups, nanoscale sizes, and moderate adsorption properties. Hence, when CDs-based new materials are applied as a stationary phase for column chromatography, they can provide rich reaction sites and ensure the uniformity of the chromatographic packing process. The use of CDs can effectively avoid the peak-tailing phenomenon caused by the strong interaction of large π-conjugated systems with some analytes and improve the efficiency of the chromatographic column. As such, these nanomaterials show good application prospects in the field of chromatographic separation. In this review, the development history, classification, and synthesis strategies of CDs are briefly described. We then focus on the development of CDs-based chromatographic separation materials by systematically reviewing the recent advances in the use of CDs-based materials as a stationary phase for high-performance liquid chromatography (including hydrophilic interaction, reversed-phase, mixed-mode, and chiral chromatography), gas chromatography, and capillary electrochromatography, with special emphasis on the preparation methods and applications of various stationary phases. Finally, the development prospects of CDs and future research efforts on these materials are also analyzed and discussed. This review can provide guidance on the rational design and application of new CDs-based chromatographic separation materials.

14.
J Chromatogr A ; 1708: 464367, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714014

RESUMO

Chirality is a common phenomenon in nature. Different enantiomers of chiral drug compounds have obvious differences in their effects on the human body. Therefore, the separation of chiral drugs plays an extremely important role in the safe utilization of drugs. High-performance liquid chromatography (HPLC) is an effective tool for the separation and analysis of compounds, in which the chromatographic packing plays a key role in the separation. Chiral pharmaceutical separation and analysis in HPLC rely on chiral stationary phases (CSPs). Thus, various CSPs are being developed to meet the needs of chiral drug separation and analysis. In this review, recent developments in CSPs, including saccharides (cyclodextrin, cellulose, amylose and chitosan), macrocycles (macrocyclic glycopeptides, pillar[n]arene and polyamide) and porous organic materials (metal-organic frameworks, covalent organic frameworks, and porous organic cages), for pharmaceutical analysis in HPLC were summarized, the advantages and disadvantages of various stationary phases were introduced, and their development prospects were discussed.


Assuntos
Amilose , Estruturas Metalorgânicas , Humanos , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Celulose , Preparações Farmacêuticas
15.
J Chromatogr A ; 1707: 464325, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37639850

RESUMO

In this work, tetraethylenepentamine (TEPA) was used as precursor and reaction medium to prepare tetraethylenepentamine-functionalized carbon dots (TEPACDs), the resultant mixture was subsequently silanized and then grafted on the surface of bare silica. The obtained tetraethylenepentamine-functionalized carbon dots and tetraethylenepentamine co-modified silica stationary phase (Sil-TEPA/CDs) was characterized by multiple ways, such as Fourier transformed infrared spectroscopy (FTIR), elemental analysis and transmission electron microscope, which revealed the successful preparation of the mixed stationary phase and higher density of functional groups on co-modified stationary phase than precursor single-modified stationary phase. The synergistic effect of TEPACDs and TEPA was proved by comparing the separation performance of Sil-TEPA/CDs and Sil-TEPA toward amino acids, nucleosides, and nucleobases, which distinctly enhanced the selectivity of Sil-TEPA/CDs. Thus, 12 nucleosides and nucleobases and 11 amino acids was nicely separated on Sil-TEPA/CDs. By study the influences of the changes of mobile phase composition, mobile phase buffer concentration and buffer pH on the retention behaviors of Sil-TEPA and Sil-TEPA/CDs, it was found that both hydrophilic partitioning and adsorption of analytes on Sil-TEPA/CDs were enhanced benefit from the co-existence of TEPA and TEPACDs, which provided the analytes better separation performance. By comparing the column quality of Sil-TEPA/CDs with four commercially available columns, Sil-TEPA/CDs exhibited the best peak asymmetry of 0.98, and second best column efficiency of 43895 m-1 using guanosine as analyte. The RSD (n = 9) of the retention times of five selected analytes on Sil-TEPA/CDs were within 0.30-0.61% during 40 h of continuously elution, which implied excellent stability of prepared packing material.


Assuntos
Aminoácidos , Nucleosídeos , Carbono , Cromatografia , Dióxido de Silício , Trietilenofosforamida
16.
ACS Appl Mater Interfaces ; 15(32): 38653-38664, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37535012

RESUMO

As a typical chronic inflammatory joint disease with swelling and pain syndromes, rheumatoid arthritis (RA) is closely related to articular lubrication deficiency and excessive proinflammatory cytokines in its progression and pathogenesis. Herein, inspired by the dual effects of joint lubrication improvement and anti-inflammation to treat RA, two novel potential therapeutic nanoagents have been developed rationally by employing herbal medicine-derived carbon quantum dots (CQDs), i.e., safflower (Carthamus tinctorius L.) CQDs and Angelica sinensis CQDs, yielding ultrahigh lubrication and anti-inflammation bioefficacy. In vitro experimental results show that the two nanoagents display excellent friction reduction due to their good water solubility and spherical structure. Using RA rat models, it is indicated that the nanoagents significantly relieved swelling symptoms and inhibited the expression of related inflammatory cytokines, including IL-1, IL-6, and TNF-α, indicating their extraordinary anti-inflammation bioefficacy. Thus, combining the lubricating and anti-inflammation bioefficacy of CQDs derived from herbal medicine is an attractive strategy to develop new nanoagents for RA treatment.


Assuntos
Artrite Reumatoide , Medicamentos de Ervas Chinesas , Pontos Quânticos , Ratos , Animais , Carbono/uso terapêutico , Lubrificação , Pontos Quânticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
17.
Anal Chim Acta ; 1274: 341496, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455089

RESUMO

Ionic liquids (ILs), which are salts in a molten state below 100 °C, have become a hot topic of research in various fields because of their negligible vapour pressure, high thermal stability, and tunable viscosity. Chiral ionic liquids (CILs) can be applied in chromatography and capillary electrophoresis fields to improve the performance of enantiomeric separation, such as chiral stationary phases (CSPs) and mobile phase additives in high-performance liquid chromatography (HPLC); CSPs in gas chromatography (GC); and background electrolyte additives (BGE), chiral ligands and chiral selectors (CSs) in capillary electrophoresis (CE). This review focuses on the applications of CILs in HPLC and CE for the separation of enantiomers in the past five years. The mechanism for separating enantiomers was explained, and the prospect of the application of CILs in chiral liquid chromatography (LC) and CE analysis was also discussed.

18.
Mikrochim Acta ; 190(6): 243, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37247129

RESUMO

Mn3O4 nanoparticles composed of porous reduced graphene oxide nanosheets (Mn3O4@p-rGO) with enhanced oxidase-like activity were successfully fabricated through an in-situ approach for fast colorimetric detection of ascorbic acid (AA). The residual Mn2+ in the GO suspension of Hummers method was directly reused as the manganese source, improving the atom utilization efficiency. Benefiting from the uniform distribution of Mn3O4 nanoparticles on the surface of p-rGO nanosheets, the nanocomposite exhibited larger surface area, more active sites, and accelerated electron transfer efficiency, which enhanced the oxidase-like activity. Mn3O4@p-rGO nanocomposite efficiently activate dissolved O2 to generate singlet oxygen (1O2), leading to high oxidation capacity toward the substrate 3,3',5,5'-tetramethylbenzidine (TMB) without the extra addition of H2O2. Furthermore, the prominent absorption peak of the blue ox-TMB at 652 nm gradually decreased in the presence of AA, and a facile and fast colorimetric sensor was constructed with a good linear relationship (0.5-80 µM) and low LOD (0.278 µM) toward AA. Owing to the simplicity and excellent stability of the sensing platform, its practical application for AA detection in juices has shown good feasibility and reliability compared with HPLC and the 2, 4-dinitrophenylhydrazine colorimetric method. The oxidase-like Mn3O4@p-rGO provides a versatile platform for applications in food testing and disease diagnosis.


Assuntos
Nanopartículas , Oxirredutases , Colorimetria , Peróxido de Hidrogênio , Porosidade , Reprodutibilidade dos Testes , Ácido Ascórbico
19.
J Chromatogr A ; 1700: 464032, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37148566

RESUMO

Chiral metal organic frameworks (CMOFs) are a kind of crystal porous framework material that has attracted increasing attention due to the customizable combination of metal nodes and organic ligands. In particular, the highly ordered crystal structure and rich adjustable chiral structure make it a promising material for developing new chiral separation material systems. In this review, the progress of CMOFs and their different types of composites used as chiral stationary phases (CSPs) in liquid chromatography for enantioseparation are discussed. The characteristics of CMOFs and their composites are summarized, aiming to provide new ideas for the development of CMOFs with better performance and further promote the application of CMOFs materials in enantioselective high-performance liquid chromatography (HPLC).


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estereoisomerismo , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Metais/química
20.
ACS Appl Mater Interfaces ; 15(15): 18608-18619, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37032476

RESUMO

Bacterial infection and excess reactive oxygen species are key factors that lead to slow or substantially delayed wound healing. It is crucial to design and develop new nanomaterials with antibacterial and antioxidative capabilities for wound healing. Here, positively charged carbon dots (CDs) are rationally designed and synthesized from p-phenylenediamine and polyethyleneimine by a facile one-pot solvothermal method, which show good biocompatibility in in vitro cytotoxicity, hemolysis assays, and in vivo toxicity evaluation. The positively charged CDs show superior antimicrobial effect against Staphylococcus aureus (S. aureus) at very low concentrations, reducing the risk of wound infection. At the same time, CDs with surface defects and unpaired electrons can effectively scavenge excess free radicals to reduce oxidative stress damage, accelerate wound inflammation-proliferation transition, and promote wound healing. The mouse model of skin infection demonstrates that CDs can effectively promote the wound healing of skin infection without obvious side effects by simply dropping or spraying onto the wound. We believe that the prepared CDs have satisfactory biocompatibility, antioxidant capacity, and excellent antibacterial activity and have great application potential in wound healing.


Assuntos
Infecções Estafilocócicas , Infecção dos Ferimentos , Camundongos , Animais , Antioxidantes/farmacologia , Staphylococcus aureus , Carbono , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA