Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Water Res ; 253: 121303, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382288

RESUMO

Many organic pollutants were detected in tap water (TW) and source water (SW) along the Yangtze River. However, the potential toxic effects and the high-concern organics (HCOs) which drive the effect are still unknown. Here, a non-targeted toxicity testing method based on the concentration-dependent transcriptome and non-targeted LC-HRMS analysis combining tiered filtering were used to reveal the overall biological effects and chemical information. Subsequently, we developed a qualitative pathway-structure relationship (QPSR) model to effectively match the biological and chemical information and successfully identified HCOs in TW and SW along the Yangtze River by potential substructures of HCOs. Non-targeted toxicity testing found that the biological potency of both TW and SW was stronger in the downstream of the Yangtze River, and disruption of the endocrine system and cancer were the main drivers of the effect. In addition, non-targeted LC-HRMS analysis combined with retention time prediction results identified 3220 and 631 high-confidence compound structures in positive and negative ion modes, respectively. Then, QPSR model was further implied and identified a total of 103 HCOs, containing 35 industrial chemicals, 30 PPCPs, 26 pesticides, and 12 hormones in TW and SW, respectively. Among them, the neuroactive and hormonal compounds oxoamide, 8-iso-16-cyclohexyl-tetranor prostaglandin E2, E Keppra, and Tocris-0788 showed the highest frequency of detection, which were identified in more than 1/3 of the samples. The strategy of combining non-targeted toxicity testing and non-targeted LC-HRMS analysis will support comprehensive biological effect assessment, identification of HCOs, and risk control of mixtures.


Assuntos
Poluentes Ambientais , Praguicidas , Poluentes Químicos da Água , Água/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Praguicidas/análise , Rios/química , Poluentes Ambientais/análise , Monitoramento Ambiental/métodos , China
2.
Environ Health Perspect ; 131(12): 127023, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157273

RESUMO

BACKGROUND: 2,4,6-Trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP) are three widely detected trihalophenolic disinfection by-products (DBPs). Previous studies have mainly focused on the carcinogenic risk and developmental toxicity of 2,4,6-trihalophenols. Very little is known about their immunotoxicity in mammals. OBJECTIVES: We investigated the effects of 2,4,6-trihalophenols on mammalian immunity using a mouse macrophage model infected with bacteria or intracellular parasites and aimed to elucidate the underlying mechanisms from an epitranscriptomic perspective. The identified mechanisms were further validated in human peripheral blood mononuclear cells (PBMCs). METHODS: The mouse macrophage cell line RAW264.7 and primary mouse peritoneal macrophages were exposed to different concentrations of TCP, TBP, and TIP. The pro-inflammatory marker Ly6C, the survival of the bacterium Escherichia coli (E. coli), and the parasite burden of Toxoplasma gondii (T. gondii) were assessed. Furthermore, the global gene expression profiling of macrophages following exposure to 2,4,6-trihalophenols was obtained through RNA-sequencing (RNA-seq). The effects of 2,4,6-trihalophenols on RNA N6-methyladenosine (m6A) methyltransferases and total RNA m6A levels were evaluated using Western blotting and dot blot, respectively. Transcriptome-wide m6A methylome was analyzed by m6A-seq. In addition, expression of m6A regulators and total RNA m6A levels in human PBMCs exposed to 2,4,6-trihalophenols were detected using quantitative reverse transcriptase polymerase chain reaction and dot blot, respectively. RESULTS: Mouse macrophages exposed to TCP, TBP, or TIP had lower expression of the pro-inflammatory marker Ly6C, with a greater difference from control observed for TIP-exposed cells. Consistently, macrophages exposed to such DBPs, especially TIP, were susceptible to infection with the bacterium E. coli and the intracellular parasite T. gondii, indicating a compromised ability of macrophages to defend against pathogens. Intriguingly, macrophages exposed to TIP had significantly greater m6A levels, which correlated with the greater expression levels of m6A methyltransferases. Macrophages exposed to each of the three 2,4,6-trihalophenols exhibited transcriptome-wide redistribution of m6A. In particular, the m6A peaks in genes associated with immune-related pathways were altered after exposure. In addition, differences in m6A were also observed in human PBMCs after exposure to 2,4,6-trihalophenols. DISCUSSION: These findings suggest that 2,4,6-trihalophenol exposure impaired the ability of macrophages to defend against pathogens. This response might be associated with notable differences in m6A after exposure. To the best of our knowledge, this study presents the first m6A landscape across the transcriptome of immune cells exposed to pollutants. However, significant challenges remain in elucidating the mechanisms by which m6A mediates immune dysregulation in infected macrophages after 2,4,6-trihalophenol exposure. https://doi.org/10.1289/EHP11329.


Assuntos
Clorofenóis , Desinfecção , Animais , Humanos , Leucócitos Mononucleares/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Macrófagos/metabolismo , RNA/genética , Metiltransferases/genética , Mamíferos/genética , Mamíferos/metabolismo
3.
BMC Med Educ ; 23(1): 630, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661271

RESUMO

BACKGROUND: Despite the proven effectiveness of simulation-based learning activities, its adoption in medical education remains limited, and the influence of simulation on student motivation, particularly subjective task values, is seldom explored. This study aimed to investigate the impact of a simulation-based learning activity on student learning and subjective task values in a medical morphology-related course of Human Parasitology. METHODS: A quasi-experimental study was conducted with 113 Chinese undergraduate medical students who participated in a Human Parasitology course during April to May 2022. Students were divided into two groups: Simulation Group (n = 55), where students used the simulation, and Lecture Group (n = 58), where students attended an online lecture. Students' learning was measured prior to the intervention, immediately after the intervention, and three weeks later to assess knowledge retention. The subjective task values questionnaire was administered before and after the interventions. Data were analyzed using one-way ANCOVA and MANOVA. RESULTS: Students in the Simulation Group exhibited significantly higher knowledge gain compared to the Lecture Group [F (1,110) = 23.69, p < 0.01]. Additionally, the Simulation Group retained knowledge significantly better than the Lecture Group [F (1,101) = 10.05, p < 0.005]. Furthermore, students in the Simulation Group experienced a significant increase in subjective task values after the intervention [F (3, 52) = 3.57, p < 0.05, ηp2 = 0.17], while students in the Lecture Group reported a significant decrease in subjective task values [F (3, 55) = 2.96, p < 0.05, ηp2 = 0.14]. CONCLUSIONS: Simulation-based learning not only leads to superior learning but also enhances students' subjective task values. These findings offer valuable insights into designing effective simulation-based learning experiences in medical education and have significant practical implications for educators and medical professionals.


Assuntos
Educação Médica , Estudantes de Medicina , Realidade Virtual , Humanos , Motivação , Aprendizagem
4.
PLoS Negl Trop Dis ; 17(2): e0011105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36730424

RESUMO

Toxoplasma gondii is the most successful parasite worldwide. It is of great interest to understand how T. gondii induce different immune responses in different hosts. In this study, we found that a peptide of T. gondii microneme protein MIC3 induced TNF-α production, NF-κB phosphorylation, iNOS transcription and Ly6C expression in mouse macrophage RAW264.7 cells. MyD88 inhibition, small interfering RNA against Tlr11 and CRISPR/Cas9-mediated knock-out of Tlr11 all reduced MIC3-induced TNF-α production, NF-κB phosphorylation, iNOS transcription and Ly6C expression. Additionally, we determined the location of MIC3 peptide in mouse macrophages using immunofluorescence. MIC3 could both adhere to the cell membrane of mouse macrophages and enter the cells. These results suggest that MIC3 triggered the immune responses in mouse macrophages via TLR11/MyD88/NF-κB pathway. It is known that human macrophages lacking TLR11. We predicted that the immune responses induced by MIC3 in human macrophages were significantly different from those in mouse macrophages. As expected, MIC3 peptide failed to induce TNF-α expression, iNOS expression and NF-κB phosphorylation in human THP-1 derived macrophages. MIC3 induced macrophage immune responses via TLR11. Intriguingly, the amino acid sequence of MIC3 is completely different from the well-known TLR11 ligand profilin, which generates a potent IL-12p40, TNF-α and IL-6 response. In marked contrast to profilin, MIC3 could not induce IL-12p40 expression in both mouse RAW264.7 cells and human THP-1 derived macrophages. Furthermore, the simulated tertiary structure of MIC3 peptide shows poor similarity with the crystal structure of profilin, suggesting that MIC3 might be a different ligand from profilin. These findings about MIC3 and TLR11 will provide us with important insights into the pathogenesis of toxoplasmosis and coevolution during host-parasite interaction.


Assuntos
Toxoplasma , Toxoplasmose Animal , Camundongos , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , NF-kappa B , Profilinas , Ligantes , Micronema , Toxoplasmose Animal/parasitologia , Macrófagos/metabolismo , Receptores Toll-Like/genética
5.
Ecotoxicol Environ Saf ; 252: 114608, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738612

RESUMO

Embryonic developmental effects of disinfection by-products, which are generated during drinking water treatment and widely detected in environment, have gained more and more attention nowadays, calling for construction of in vitro research models which can mimic early embryonic development to evaluate the embryotoxicity. The embryonic stem cell test offers a promising assay to predict embryotoxicity of environmental pollutions. However, it is not appropriate for the toxicological study of preimplantation embryos. Here, we used mouse extended stem cells (mEPS) to reconstruct embryo-like structures (blastoid), furtherly attempting to evaluate the reliability of this model for the prediction of possible developmental toxicity of 2,4,6-triiodophenol (TIP, 5-50 µM), a novel halogenated disinfection byproduct widely detected in water and even drinking water, to mammalian preimplantation embryo. To verify this, we treated mouse embryo derived from in vitro fertilization (IVF-embryo) as reference. The results showed that mEPS-blastoid was like natural blastocyst in morphology, cell composition, and could recapitulate key developmental events happened during mouse preimplantation stage. When blastoid and IVF-embryo models were separately exposed to TIP, their final blastocyst formation rates were not impaired, according to morphological features, meanwhile that TIP exposure caused slight cell apoptosis. Besides, TIP induced an ICM cell bias in cell fate decision, resulting in cell proportion change, which implied abnormal developmental potential. Though we could not evaluate TIP's embryotoxicity before 8-cell stage using blastoid model, its viability as a novel and high-throughput assessment platform for increasing environmental pollutants was still recognized.


Assuntos
Água Potável , Animais , Feminino , Camundongos , Gravidez , Embrião de Mamíferos , Desenvolvimento Embrionário , Mamíferos , Reprodutibilidade dos Testes
6.
Chemosphere ; 305: 135351, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35718037

RESUMO

Disinfection by-products (DBPs) are inevitably generated in the process of disinfection. Among them, aromatic halogenated DBPs, such as 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP), have attracted considerable interest for their high toxicity. A systematic nephrotoxicity evaluation of 2,4,6-trihalophenols is still lacking. In this study, mice were exposed to TCP, TBP and TIP ranging from environmental-related low concentration to high concentration that commonly used in animal study (0.5-200 µg/L). Kidney histopathology, urine protein detection and urine metabolomics were performed. Remarkable changes including kidney damage, proteinuria and glomerular mesangial cell proliferation were observed after three 2,4,6-trihalophenol exposure, even at low concentration of 0.5 µg/L. The nephrotoxicity rank order was TIP > TBP > TCP. Additionally, in vivo exposure to 2,4,6-trihalophenols also led to apparent changes in urinary metabolic profiles. Biosynthesis pathways of branched-chain amino acids (BCAAs, containing valine, leucine and isoleucine) were disturbed even at the early stage of exposure (4 weeks). Intriguingly, it has been reported that BCAAs could promote the proliferation of glomerular mesangial cells. Thus, in vitro cell experiments were further performed on mouse glomerular mesangial cell line MES-13. Consistently with in vivo results, cell proliferation was observed in MES-13 cells after exposure to 2,4,6-trihalophenols, especially to TBP and TIP. Meanwhile, TCP at high concentration, TBP and TIP at not only high concentration but also low concentration, induced BCAAs accumulation in glomerular mesangial cells, which was completely commensurate to that observed in cell proliferation assay. Then the proliferation of MES-13 cells induced by 2,4,6-trihalophenols was remarkably inhibited after BCAAs interference. Here we provide direct link between disturbed BCAAs and the nephrotoxicity of 2,4,6-trihalophenols. 2,4,6-trihalophenols could induce excess BCAAs, which further led to proliferation of glomerular mesangial cells and renal injury. This study revealed the nephrotoxicity of aromatic trihalogenated DBPs and provided new insights into the potential toxic mechanisms.


Assuntos
Aminoácidos de Cadeia Ramificada , Clorofenóis , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Desinfecção , Rim/metabolismo , Leucina , Camundongos
7.
Immunology ; 167(1): 77-93, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35689656

RESUMO

The source of macrophages that contribute to human liver disease remains poorly understood. The purpose of this study is to investigate the functional mechanism of peritoneal macrophages in the development of hepatic immunopathology. By performing the natural infection with the blood fluke Schistosoma japonicum (S. japonicum) and the chemically carbon tetrachloride (CCl4 )-induced liver injured mouse model, we identified the peritoneal cavity as an essential source of hepatic macrophages. Here, we show that a large number of F4/80+ macrophages was accumulated in the peritoneal cavity during liver injury. An unknown source population of macrophages, which highly expressed GATA6 that is specific to peritoneal macrophages, was found to exist in the injured livers. Peritoneal macrophage deletion by injection with clodronate-containing liposomes led to an attenuated hepatic pathology and the inflammatory microenvironment, while adoptive transfer of macrophages into the abdominal cavity, by contrast, results in restoring liver pathology. Importantly, there are set genes of monocyte chemoattractant protein (MCP)-1, -2, and -3 that are highly related to recruit GATA6+ macrophages during S. japonicum infection, while administration of bindarit, a selective inhibitor of MCPs synthesis, dramatically decreased the hepatic expression of GATA6+ macrophages and thus attenuated hepatic pathology. Furthermore, in vivo study showed that peritoneal macrophages promote hepatic immunopathology is dependent on the accumulation of regulatory T cells (Tregs) in the liver. Altogether, these data provide the first clear evidence that GATA6+ peritoneal macrophages play critical roles in both the formation of hepatic immunopathology and the accumulation of Tregs cells.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Animais , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Humanos , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esquistossomose Japônica/metabolismo , Linfócitos T Reguladores/metabolismo
8.
Ecotoxicol Environ Saf ; 241: 113745, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691197

RESUMO

2,4,6-triiodophenol (TIP), a novel type of halophenolic disinfection byproducts, has been widely detected in water bodies, even in drinking water. Recently, TIP has drawn increasing concerns on account of considerable developmental toxicity towards lower organisms and cytotoxicity for mammalian cells. However, it remains unknown about its toxicity on mammalian pre-implantation embryos. Here, by exposing mouse zygotes derived in vitro fertilization to TIP, which ranged from 5 to 50 µM, we found that TIP impaired the quality of pre-implantation mouse embryos in a dose-dependent manner, inducing decline of both total and trophectoderm cell numbers, enhancing caspase 3/7 activity and reactive oxygen species generation, though it did not decrease blastocyst formation efficiency. For the sake that only high qualified embryos are able to implant in endometrium and generate health body finally, we applied a previously modified in vitro culture system to assess TIP-exposed blastocysts' further developmental potency beyond pre-implantation stage. Surprisingly, although the exposed dose was only 5 µM and TIP was removed as soon as the zygotes reached blastocyst stage, these blastocysts still nearly lost their implantation and egg cylinder formation ability, exhibiting abnormal embryonic lineage differentiation pattern as well. Therefore, our study not only entirely shows TIP embryonic toxicity on mouse pre-implantation embryos, but also proposes a model to evaluate embryotoxicity from the zygote to egg cylinder stage.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Implantação do Embrião , Feminino , Mamíferos , Camundongos , Fenóis , Zigoto
9.
Water Res ; 218: 118431, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35468502

RESUMO

Halophenolic disinfection byproducts (DBPs) in drinking water have attracted considerable concerns in recent years due to their wide occurrence and high toxicity. The liver has been demonstrated as a major target organ for several halophenolic DBPs. However, little is known about the underlying mechanisms of liver damage caused by halophenolic DBPs. In this study, 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodiophenol (TIP) were selected as representative halophenolic DBPs and exposed to C57BL/6 mice at an environmentally-relevant concentration (0.5 µg/L) and two toxicological concentrations (10 and 200 µg/L) for 12 weeks. Then, a combination of histopathologic and biochemical examination, liver transcriptome, serum metabolome, and gut microbiome was adopted. It was found that trihalophenol exposure significantly elevated the serum levels of alkaline phosphatase and albumin. Liver inflammation was observed at toxicological concentrations in the histopathological examination. Transcriptome results showed that the three trihalophenols could impact immune-related pathways at 0.5 µg/L, which further contributed to the disturbance of pathways in infectious diseases and cancers. Notably, TBP and TIP had higher immunosuppressive effects than TCP, which might lead to uncontrolled infection and cancer. In terms of serum metabolic profiles, energy metabolism pathway of citrate cycle and amino acid metabolism pathways of valine, leucine, and isoleucine were also significantly affected. Integration of the metabolomic and transcriptomic data suggested that a 12-week trihalophenol exposure could prominently disturb the glutathione metabolism pathway, indicating the impaired antioxidation and detoxification abilities in liver. Moreover, the disorder of the intestinal flora could interfere with immune regulation and host metabolism. This study reveals the toxic effects of halophenolic DBPs on mammalian liver and provides novel insights into the underlying mechanisms of hepatotoxicity.


Assuntos
Clorofenóis , Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Clorofenóis/toxicidade , Desinfetantes/análise , Desinfetantes/toxicidade , Desinfecção , Água Potável/análise , Halogenação , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Poluentes Químicos da Água/química
10.
Environ Sci Pollut Res Int ; 29(8): 12085-12099, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34558051

RESUMO

2,4,6-Tribromophenol (TBP, CAS No. 118-79-6), the most widely produced brominated phenol, is frequently detected in environmental components. The detection of TBP in human bodies has earned great concerns about its adverse effects on human beings, especially for early embryonic development. Here, we optimized the mouse embryo in vitro culture (IVC) system for early post-implantation embryos and employed it to determine the embryotoxicity of TBP. With this new research model, we revealed the dose-dependent toxic effects of TBP on mouse embryos from peri-implantation to egg cylinder stages. Furthermore, TBP exposure inhibited the differentiation and survival of epiblast (EPI) cells and extraembryonic endoderm (ExEn) cells, while those of extraembryonic ectoderm (ExEc) cells were not influenced. These results implied that TBP might inhibit embryonic development by influencing the generation of three primary germ layers and fetal membranes (the amnion, chorionic disk, umbilical cord, and yolk sac). In summary, we showed a proof of concept for applying mouse embryo IVC system as a novel research model for studying mammalian embryonic toxicology of environmental pollutants. This study also demonstrated the toxicity of TBP on early embryonic development of mammals.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Animais , Diferenciação Celular , Feminino , Camundongos , Gravidez
11.
Methods Mol Biol ; 2252: 221-237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765278

RESUMO

Ribosome profiling is a powerful technique that enables researchers to monitor translational events across the transcriptome. It provides a snapshot of ribosome positions and density across the transcriptome at a sub-codon resolution. Here we describe the whole procedure of profiling ribosome footprints in mammalian cells. Two methods for Ribo-seq library construction are introduced, and their advantages and disadvantages are compared. There is a room for further improvement of Ribo-seq in terms of the amount of starting material, the duration of library construction, and the resolution of sequencing results.


Assuntos
Biblioteca Gênica , Poli A/metabolismo , RNA Mensageiro/genética , Ribossomos/metabolismo , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biossíntese de Proteínas , RNA Mensageiro/química , Análise de Sequência de RNA/métodos , Software
12.
Chemosphere ; 263: 127899, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297007

RESUMO

2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP) are a new class of halophenolic disinfection byproducts (DBPs) which have been widely detected in drinking water. In recent years, their developmental toxicity has got increasing public attention due to their potential toxic effects on embryo development towards lower organisms. Nonetheless, the application of human embryos for embryonic toxicologic studies is rendered by ethical and moral considerations, as well as the technical barrier to sustaining normal development beyond a few days. Human extended pluripotent stem (EPS) cells (novel totipotent-like stem cells) represent a much more appropriate cellular model for studying human embryo development. In this study, we utilized human EPS cells to study the developmental toxicity of TCP, TBP and TIP, respectively. All three halophenolic DBPs showed cytotoxicity against human EPS cells in an obvious dose-dependent manner, among which TIP was the most cytotoxic one. Notably, the expression of pluripotent genes in human EPS cells significantly declined after 2,4,6-trihalophenol exposure. Meanwhile, 2,4,6-trihalophenol exposure promoted ectodermal differentiation of human EPS cells in an embryoid bodies (EBs) differentiation assay, while both endodermal and mesodermal differentiation were impaired. These results implied that phenolic halogenated DBPs have specific effects on human embryo development even in the early stage of pregnancy. In summary, we applied human EPS cells as a novel research model for human embryo developmental toxicity study of environmental pollutants, and demonstrated the toxicity of phenolic halogenated DBPs on early embryo development of human beings.


Assuntos
Desinfetantes , Água Potável , Células-Tronco Pluripotentes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Humanos , Células-Tronco Pluripotentes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Chemosphere ; 260: 127579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32679375

RESUMO

As important emerging contaminants, nonsteroidal anti-inflammatory drugs (NSAIDs) are the most intensively prescribed pharmaceuticals introduced to drinking water due to their incomplete removal in wastewater treatment. While concentrations of NSAIDs in drinking water are generally low, they have been attracting increasing concern as a result of their disinfection byproducts (DBPs) generated in drinking water disinfection. In this work, detection methods were set up for four representative indole-derivative NSAIDs (indomethacin, acemetacin, sulindac, and etodolac) using ultra performance liquid chromatography/electrospray ionization-triple quadruple mass spectrometry (UPLC/ESI-tqMS). ESI+ was better for detection of indomethacin and sulindac, whereas ESI- was suitable to detection of acemetacin and etodolac. With optimized MS parameters, the instrument detection and quantitation limits of the four indole derivatives were achieved to be 1.1-24.6 ng/L and 3.7-41.0 ng/L, respectively. During chlorination, indomethacin and acemetacin could undergo five major reaction types (chlorine substitution, hydrolysis, decarboxylation, C-C coupling, and C-N cleavage) to form a series of DBPs, among which 19 were proposed/identified with structures. Based on the revealed structures of DBPs, transformation pathways of indomethacin and acemetacin in chlorination were partially elucidated. Notably, individual and mixture toxicity of indomethacin and acemetacin before/after chlorination were evaluated using a well-established acute toxicity assessment and a Hep G2 cell cytotoxicity assay, respectively. Results showed that the predicted acute toxicity of a few chlorination DBPs were higher than their precursors; chlorination substantially enhanced the mixture cytotoxicity of indomethacin by over 10 times and slightly increased the mixture cytotoxicity of acemetacin.


Assuntos
Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/toxicidade , Desinfecção/métodos , Poluentes Químicos da Água/análise , Anti-Inflamatórios não Esteroides/química , Cloro/química , Cromatografia Líquida , Desinfetantes/química , Água Potável/química , Halogenação , Células Hep G2 , Humanos , Indóis/análise , Indóis/química , Indóis/toxicidade , Indometacina/análogos & derivados , Indometacina/análise , Indometacina/química , Indometacina/toxicidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
14.
Environ Sci Technol ; 54(16): 10149-10158, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32674564

RESUMO

1,4-Dioxane is a widely used industrial solvent that has been frequently detected in aquatic environments. However, the hepatotoxicity of long-term dioxane exposure at environmentally relevant concentrations and underlying mechanisms of liver damage remain unclear. In this study, male mice were exposed to dioxane at concentrations of 0.5, 5, 50, and 500 ppm for 12 weeks, followed by histopathological examination of liver sections and multiomics investigation of the hepatic transcriptome, serum metabolome, and gut microbiome. Results showed that dioxane exposure at environmentally relevant concentrations induced hepatic inflammation and caused changes in the hepatic transcriptome and serum metabolic profiles. However, no inflammatory response was observed after in vitro exposure to all concentrations of dioxane and its in vivo metabolites. The gut microbiome was considered to be contributing to this apparently contradictory response. Increased levels of lipopolysaccharide (LPS) may be produced by some gut microbiota, such as Porphyromonadaceae and Helicobacteraceae, after in vivo 500 ppm of dioxane exposure. LPS may enter the blood circulation through an impaired intestinal wall and aggravate hepatic inflammation in mice. This study provides novel insight into the underlying mechanisms of hepatic inflammation induced by dioxane and highlights the need for concerns about environmentally relevant concentrations of dioxane exposure.


Assuntos
Microbioma Gastrointestinal , Animais , Dioxanos , Inflamação/induzido quimicamente , Fígado , Masculino , Camundongos
15.
Br J Pharmacol ; 176(24): 4666-4680, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31412137

RESUMO

BACKGROUND AND PURPOSE: Praziquantel is a schistosomicide, which has been used for more than 30 years due to its efficiency, safety, and mild side effects. Previous studies showed that prolonged treatment with praziquantel suppressed the development of liver fibrosis in mice with schistosomiasis. In this study, we investigated the potential mechanisms underlying the antifibrotic effects of praziquantel. EXPERIMENTAL APPROACH: To avoid the effect of schistosomicidal activity of praziquantel against liver fibrosis induced by Schistosoma japonicum infection, we established a mouse model of carbon tetrachloride (CCl4 )-induced liver fibrosis for in vivo studies and used TGF-ß1-stimulated human hepatic stellate cell line (LX-2) in addition to other fibroblast-like cell line (MES13) and fibroblast cell line (NIH3T3) in vitro. Western blotting, immunohistochemistry, quantitative real-time PCR, siRNA, and immunofluorescence staining were utilized to assess the expression of key molecules in liver fibrosis and the TGF-ß/Smad pathway. KEY RESULTS: Praziquantel significantly attenuated CCl4 -induced liver fibrosis by inhibiting the activation of hepatic stellate cells (HSCs) and expression of collagen matrix via enhancement of Smad7 expression, which were confirmed in LX-2, MES13, and NIH3T3 cells in vitro. In contrast, knockdown of Smad7 in LX-2 cells prevented praziquantel-mediated inhibition of LX-2 cell activation and TGF-ß1-mediated collagen type I α1 induction, revealing the critical role of Smad7 in the antifibrotic effect of praziquantel during liver fibrosis. CONCLUSIONS AND IMPLICATIONS: PZQ exhibited a strong efficacy against liver fibrosis by inhibiting activation of HSCs via Smad7 up-regulation, suggesting potential broad utility in treatment of diseases characterized by liver fibrosis.


Assuntos
Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Praziquantel/farmacologia , Proteínas Smad/metabolismo , Proteína Smad7/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Linhagem Celular , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , Camundongos , Células NIH 3T3 , Transdução de Sinais , Regulação para Cima
16.
BMC Med Educ ; 19(1): 295, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370838

RESUMO

BACKGROUND: There is a dearth of published literature that demonstrates the impact of a Guide to Reading Biomedical English Literature course on new Chinese medical postgraduates. Keeping this gap in mind, the objectives of this study were to assess the factors associated with course effectiveness using the teacher, postgraduate and organizational factors. METHODS: This study was conducted at Nanjing Medical University from December 2014 to December 2015. The participants were 440 new graduate students from different medical specialties. At baseline, each student was assessed for teacher factors, individual factors and organizational factors using a self-administered structured scored anonymous questionnaire. After that, Pearson chi-square analysis was conducted to evaluate the factors that impact teacher factors (knowledge level, teaching style, individualized teaching, logical teaching, heuristic teaching, literature difficulty, bilingual teaching), individual factors (gender, attitude toward studying, previewing literature, English literacy level) and course management (such as teaching objectives and assessment system) on this course. Furthermore, multiple logistic regression analyses were performed to determine the impact of the above factors on our outcome variables (knowledge level, teaching style, individualized teaching, heuristic teaching, study attitude, previewing literature, management). RESULTS: Nearly all of the participants (420 of 440, 95.5%) thought this course was helpful for learning to read scientific literature and understanding scientific research design. Multivariate logistic regression analyses showed that the participants perception of the course as effective was associated with teachers' high knowledge level (Adjusted Odds Ratio, AOR = 49.673; 95% confidence interval, 95% CI = 4.28, 575.90). In addition, heuristic teaching was found to be significantly associated with a positive teaching effect of teaching (AOR = 12.76; 95% CI = 1.78, 91.64). Furthermore, the participants perception of the course as effective was associated with positive attitude toward studying (AOR = 25.004; 95% CI = 2.51, 249.09). Previewing literature was also associated with course effectiveness (AOR = 0.02; 95% CI = 0.04, 0.11). CONCLUSIONS: This study indicated that the course effectiveness of the Guide for Reading Biomedical English Literature was associated with i) teachers' knowledge, ii) heuristic teaching, iii) students' positive attitude, and iv) students' previewing literature.


Assuntos
Educação de Pós-Graduação em Medicina , Idioma , Publicações , Leitura , Adulto , China , Estudos Transversais , Avaliação Educacional , Feminino , Humanos , Masculino , Análise de Regressão , Estudantes de Medicina , Inquéritos e Questionários , Adulto Jovem
17.
Immunopharmacol Immunotoxicol ; 41(2): 319-326, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31046488

RESUMO

Objective: 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP), and 2,4,6-triiodophenol (TIP) are three aromatic halogenated disinfection byproducts (DBPs) identified in chlorinated saline effluents. This study aimed to evaluate and compare their immunotoxicity and immunomodulatory effects on macrophages. Materials and methods: CCK-8 assay was used to evaluate cytotoxicity of TCP, TBP, and TIP in mouse macrophage RAW264.7 cells. A light microscope and digital camera were used to record the morphological changes of RAW264.7 cells. qRT-PCR was used to measure the mRNA levels of polarization markers and secreted cytokines. Cytokine production was also detected by ELISA. Flow cytometry was performed to analyze the expression of M1 and M2 markers on macrophages. Results: TCP, TBP, and TIP had different cytotoxic effects on macrophages. The rank order of cytotoxicity was TIP > TBP > TCP. Furthermore, the three halogenated DBPs displayed different preferences for macrophage polarization. Intriguingly, 200 µM TIP remarkably induced the M2-dominant polarization of macrophages, while 200 µM TCP induced an M1-dominant polarization of macrophages. TBP has a moderate ability in inducing M1 and M2 polarization compared with TCP and TIP. Conclusions: TIP displayed higher cytotoxicity against macrophages than TBP and TCP, its brominated and chlorinated analogs. Since M1 and M2 macrophages facilitate the inflammatory and anti-inflammatory responses, respectively, the discrepancy of TCP, TBP, and TIP in inducing macrophage polarization may lead to distinct immunomodulatory and toxicological outcomes, thus giving rise to different types of diseases. This finding may provide novel insights into evaluating the toxicity of environmental pollutants on the immune system.


Assuntos
Clorofenóis/toxicidade , Fatores Imunológicos/toxicidade , Macrófagos/imunologia , Fenóis/toxicidade , Animais , Avaliação de Medicamentos , Macrófagos/patologia , Camundongos , Células RAW 264.7
18.
Chemosphere ; 228: 149-158, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029960

RESUMO

1,4-Dioxane (dioxane), an industrial solvent widely detected in environmental and biological matrices, has potential nephrotoxicity. However, the underlying mechanism by which dioxane induces kidney damage remains unclear. In this study, we used an integrated approach, combining kidney transcriptomics and urine metabolomics, to explore the mechanism for the toxic effects of dioxane on the mouse kidney. Transcriptomics profiling showed that exposure to 0.5 mg/L dioxane induced perturbations of multiple signaling pathways in kidneys, such as MAPK and Wnt, although no changes in oxidative stress indicators or anatomical pathology were observed. Exposure to 500 mg/L dioxane significantly disrupted various metabolic pathways, concomitantly with observed renal tissue damage and stimulated oxidant defense system. Urine metabolomic analysis using NMR indicated that exposure to dioxane gradually altered the metabolic profile of urine. Within the full range of altered metabolites, the metabolic pathway containing glycine, serine and threonine was the most significantly altered pathway at the early stage of exposure (3 weeks) in both 0.5 and 500 mg/L dioxane-treated groups. However, with prolonged exposure (9 and 12 weeks), the level of taurine significantly decreased after treatment of 0.5 mg/L dioxane, while exposure to 500 mg/L dioxane significantly increased glutathione levels in urine and decreased arginine metabolism. Furthermore, integrated omics analysis showed that 500 mg/L dioxane exposure induced arginine deficiency by perturbing several genes involved in renal arginine metabolism. Shortage of arginine coupled with increased oxidative stress could lead to renal dysfunction. These findings offer novel insights into the toxicity of dioxane.


Assuntos
Dioxanos/toxicidade , Rim/lesões , Redes e Vias Metabólicas , Animais , Arginina/deficiência , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/urina , Masculino , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Camundongos , Solventes/toxicidade , Urina/química
19.
Parasite Immunol ; 41(5): e12619, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30788848

RESUMO

With increasing antibiotic resistance and drug safety concerns, novel therapeutics are urgently needed. Antimicrobial peptides are promising candidates that could address the spread of multidrug-resistant pathogens. HPRP-A1/A2 are known to display antimicrobial activity against gram-negative bacteria, gram-positive bacteria and some pathogenic fungi, but whether HPRP-A1/A2 work on Toxoplasma gondii (T gondii) is unknown. In this study, we found that the viability of tachyzoites that received HPRP-A1/A2 treatment was significantly decreased, and there was a reduction in the adhesion to and invasion of macrophages by tachyzoites after HPRP-A1/A2 treatment. HPRP-A1/A2 damaged the integrity of tachyzoite membranes, as characterized by membrane disorganization in and cytoplasm outflow from tachyzoites. In addition, in vivo injection with HPRP-A1/A2 resulted in a significantly decreased number of tachyzoites and an accelerated Th1/Tc1 response, and elicited pro-inflammatory cytokines in T gondii-infected mice. Furthermore, HPRP-A1/A2-treated splenocytes exhibited a significantly increased Tc1/Th1 response, and HPRP-A1/A2-stimulated macrophages inhibited the growth of carboxyfluorescein succinimidyl amino ester (CFSE)-labelled tachyzoites, which had higher TNF-α/IL-12 mRNA levels. Altogether, these results imply that HPRP-A1/A2 are effective against T gondii through damaging the structure of tachyzoites and inducing a protective immune response, which could offer an alternative approach against T gondii infection.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Toxoplasma/imunologia , Toxoplasmose/tratamento farmacológico , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Interleucina-12/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos ICR , Toxoplasmose/parasitologia
20.
Front Immunol ; 9: 1102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868037

RESUMO

Estradiol (E2) plays a crucial and intricate role during pregnancy to mediate several aspects of the pregnancy process. A perplexing phenomenon in congenital toxoplasmosis is that the severity of Toxoplasma gondii (T. gondii)-mediated adverse pregnancy outcome is closely related with time of primary maternal infection during pregnancy. In this study, the results showed that T. gondii infection in early pregnancy was more likely to induce miscarriage in mice than in late pregnancy, which may be related to inflammation of the maternal-fetal interface. Meanwhile, the T. gondii infection-induced-apoptotic rate of Tregs was higher and the expression of programmed death-1 (PD-1) on Tregs was lower in early pregnancy than in late pregnancy. As the level of E2 in mouse serum gradually increased with the development of pregnancy, we proposed that E2 may contribute to the discrepancy of Tregs at different stages of pregnancy. Thus, we investigated in vitro and in vivo effects of E2 in regulating Tregs. We found that E2 in vitro could protect Tregs against apoptosis and upregulate the expression of PD-1 on Tregs in a dose-dependent manner through ERα. Likewise, the simulated mid-pregnancy level of E2 in nonpregnant mice also alleviated the T. gondii infection-induced apoptosis of Tregs and potentiated the PD-1 expression on Tregs. Therefore, in the pathogenesis of T. gondii-induced abnormal pregnancy, E2 helped maintain the immune balance and improve the pregnancy outcome through regulating Tregs. This finding illustrates the intricate working of hormone-immune system interaction in infection-induced abnormal pregnancy.


Assuntos
Estradiol/farmacologia , Imunomodulação/efeitos dos fármacos , Complicações Infecciosas na Gravidez/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose Animal/imunologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Imunomodulação/genética , Masculino , Camundongos , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/tratamento farmacológico , Complicações Infecciosas na Gravidez/parasitologia , Linfócitos T Reguladores/metabolismo , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA