RESUMO
Phase diagrams and glass transition behaviors of poly(L-lactic acid)/polyoxymethylene (PLLA/POM) blends have been investigated in our previous work (Macromolecules 2013, 46, 5806-5814). In this work, the crystallization behaviors and physical properties of the PLLA/POM blends with the PLLA as the major component have been systematically studied. POM was crystallized into the fragment crystals that were finely dispersed in the PLLA matrix when cooling down from the melt of the blends. It was found that the POM fragment crystals accelerated the crystallization process of PLLA matrix and increased the final crystallinity of PLLA significantly in the blends. At the same time, the PLLA spherulites nucleated by POM fragment crystals were much smaller than those obtained from neat PLLA. It was further found that the crystallization rate of PLLA was quite dependent upon the POM loadings and the highest crystallization rate was observed at POM loadings of 7 wt %. It is considered that the POM fragment crystals take the nuclei role to initiate the crystallization of PLLA at low POM loadings, while a high content of POM in the blends leads to the large POM spherulites that cannot nucleate PLLA crystallization effectively. The obtained PLLA/POM blends at low POM loadings with small PLLA spherulites exhibited excellent optical transmittance and good mechanical performance.
RESUMO
A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m(-1)). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance.
RESUMO
The crystal orientation behavior and shape-memory performance of miscible poly(vinylidene fluoride) (PVDF)/acrylic copolymer blends in various ratios have been investigated. With the incorporation of amorphous acrylic copolymer into the gallery of PVDF lamellae, the molecular connection (tie molecule concentration) between the neighboring PVDF crystals decreases gradually. For the blends with more than 80 wt % PVDF, most of the PVDF α-crystals are transformed into ß-crystals upon deformation, and the molecular chains of the ß-crystals are aligned along the stretching direction because tie molecules transfer the loading effectively. For the blends with less than 30 wt % PVDF, almost all of the PVDF crystals are isolated from each other with very few tie molecules. Mechanical deformation induces the perpendicular crystal molecular chain arrangement with no crystal form transitions. For the blends with 40 wt % to 70 wt % PVDF, the c-axis-oriented ß-phase and the tilt-oriented α-phase coexist in the uniaxially stretched blends. The shape-memory properties of the blends were also evaluated over the same blend composition range. The maximum shape-memory recovery properties were observed for the blend sample containing 50 wt % PVDF, in which a small amount of tie molecules connect the PVDF crystallites to form a deformable elastic network. This network contributes to the good shape-memory properties of the blend. For the blends with very few tie molecules or high tie molecule concentrations, the deformation induces the slipping of the amorphous molecules or the large fibrillar crystal structure, respectively; thus, these samples exhibit relatively low shape-memory performance.