Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(5): e0024524, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564690

RESUMO

Portal vein tumor thrombosis (PVTT) frequently leads to malignant ascites (MA) in individuals with hepatocellular carcinoma (HCC), remaining a bottleneck in the treatment. This study aimed to explore the differences in microbes in paired groups and provide novel insights into PVTT and MA-related treatments. Formalin-fixed paraffin embedding ascite samples were collected from MA secondary to HCC and benign ascites (BA) secondary to liver cirrhosis (LC). Ascitic microbiota profiles were determined in the HCC and LC groups by 16S rRNA sequencing. Prognostic risk factors were screened using survival analysis. The correlation between the significantly different microbial signatures in the groups with PVTT (WVT) and non-PVTT (NVT) and clinical characteristics was explored. The expression of different immune cells was determined by labeling four markers in the MA tissue chips using multiplex immunohistochemistry. A total of 240 patients (196 with HCC with MA and 44 with LC with BA) were included in this study. Microbial profiles differed between the HCC and LC groups. PVTT and Barcelona Clinic Liver Cancer stage were shown to be prognostic risk factors. Significant differences in the alpha and beta diversities were observed between the WVT and NVT groups. Gammaproteobacteria and Acinetobacter were the most abundant in the HCC MA. Differences in microbial signatures between the WVT and NVT groups were correlated with the level of C-reactive protein and apolipoprotein A1. This study revealed the microbial differences in the tumor microenvironment of MA secondary to HCC and BA secondary to LC.IMPORTANCEFirst, we explored the alteration of the ascites ecosystem through the microbiota in patients with hepatocellular carcinoma (HCC) and liver cirrhosis. Second, this is the first clinical study to investigate the differences between patients with HCC with and without portal vein tumor thrombosis via 16S rRNA sequencing. These results revealed a decreased microbial diversity and metabolic dysregulation in individuals with HCC and portal vein tumor thrombosis. Gammaproteobacteria and Acinetobacter were the most abundant in the HCC malignant ascitic fluid. Our study provides a new perspective on treating malignant ascites secondary to HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microbiota , Veia Porta , RNA Ribossômico 16S , Carcinoma Hepatocelular/microbiologia , Humanos , Neoplasias Hepáticas/microbiologia , Masculino , Feminino , Veia Porta/microbiologia , Veia Porta/patologia , Pessoa de Meia-Idade , Prognóstico , RNA Ribossômico 16S/genética , Idoso , Ascite/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Trombose Venosa/microbiologia , Cirrose Hepática/complicações , Cirrose Hepática/microbiologia , Adulto
2.
Int Immunopharmacol ; 133: 112097, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38677092

RESUMO

BACKGROUNDS: The Gustave Roussy Immune (GRIm) score predicts survival outcomes in several cancers. However, the prognostic significance of the GRIm score in patients with malignant ascites has not yet been investigated. METHODS: Clinical samples were collected from a cohort of patients with malignant ascites secondary to hepatocellular carcinoma (HCC). We calculated serum GRIm (sGRIm) and ascites GRIm (aGRIm) scores and divided the samples into low and high GRIm score groups. Survival analysis was used to compare the prognostic significance of the sGRIm and aGRIm scores. 16S rRNA sequencing was performed to determine the profiles of the intratumoral microbiota in the groups. A fluorescent multiplex immunohistochemistry (mIHC) assay was used to detect the expression of different immune cells by labeling seven markers of malignant ascites. RESULTS: 155 patients with HCC and malignant ascites were enrolled in this study. Survival analysis revealed that the aGRIm score showed a superior prognostic significance compared to the sGRIm score. Microbial analysis demonstrated that the bacterial richness and diversity were higher in the low aGRIm score group than in the high aGRIm score group. LefSe analysis revealed that certain bacteria were correlated with high aGRIm scores. Fluorescent mIHC displayed the tumor microenvironment of malignant ascites and found that the density of CD8 + T cells was significantly higher in the low aGRIm score group than in the high aGRIm score group. CONCLUSIONS: Our present study identified a novel scoring system (aGRIm score) that can predict the survival outcome of patients with malignant ascites secondary to HCC.


Assuntos
Ascite , Carcinoma Hepatocelular , Neoplasias Hepáticas , Microbiota , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Ascite/imunologia , Ascite/microbiologia , Feminino , Masculino , Pessoa de Meia-Idade , Microbiota/imunologia , Idoso , Prognóstico , Microambiente Tumoral/imunologia , Adulto , RNA Ribossômico 16S/genética
3.
J Integr Plant Biol ; 65(3): 674-691, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36250511

RESUMO

Drought and low temperature are two key environmental factors that induce adult citrus flowering. However, the underlying regulation mechanism is poorly understood. The bZIP transcription factor FD is a key component of the florigen activation complex (FAC) which is composed of FLOWERING LOCUS T (FT), FD, and 14-3-3 proteins. In this study, isolation and characterization of CiFD in citrus found that there was alternative splicing (AS) of CiFD, forming two different proteins (CiFDα and CiFDß). Further investigation found that their expression patterns were similar in different tissues of citrus, but the subcellular localization and transcriptional activity were different. Overexpression of the CiFD DNA sequence (CiFD-DNA), CiFDα, or CiFDß in tobacco and citrus showed early flowering, and CiFD-DNA transgenic plants were the earliest, followed by CiFDß and CiFDα. Interestingly, CiFDα and CiFDß were induced by low temperature and drought, respectively. Further analysis showed that CiFDα can form a FAC complex with CiFT, Ci14-3-3, and then bind to the citrus APETALA1 (CiAP1) promoter and promote its expression. However, CiFDß can directly bind to the CiAP1 promoter independently of CiFT and Ci14-3-3. These results showed that CiFDß can form a more direct and simplified pathway that is independent of the FAC complex to regulate drought-induced flowering through AS. In addition, a bHLH transcription factor (CibHLH96) binds to CiFD promoter and promotes the expression of CiFD under drought condition. Transgenic analysis found that CibHLH96 can promote flowering in transgenic tobacco. These results suggest that CiFD is involved in drought- and low-temperature-induced citrus flowering through different regulatory patterns.


Assuntos
Citrus , Citrus/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Plantas/metabolismo , Processamento Alternativo , Flores/fisiologia , Secas , Temperatura , Florígeno/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
4.
Plant J ; 111(1): 164-182, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460135

RESUMO

Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress-induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole-resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI-mediated drought stress response in citrus.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citrus , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citrus/genética , Citrus/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Expert Rev Gastroenterol Hepatol ; 16(1): 21-31, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34937459

RESUMO

INTRODUCTION: With the progress of science and technology, artificial intelligence represented by deep learning has gradually begun to be applied in the medical field. Artificial intelligence has been applied to benign gastrointestinal lesions, tumors, early cancer, inflammatory bowel disease, gallbladder, pancreas, and other diseases. This review summarizes the latest research results on artificial intelligence in digestive endoscopy and discusses the prospect of artificial intelligence in digestive system diseases. AREAS COVERED: We retrieved relevant documents on artificial intelligence in digestive tract diseases from PubMed and Medline. This review elaborates on the knowledge of computer-aided diagnosis in digestive endoscopy. EXPERT OPINION: Artificial intelligence significantly improves diagnostic accuracy, reduces physicians' workload, and provides a shred of evidence for clinical diagnosis and treatment. Shortly, artificial intelligence will have high application value in the field of medicine.


Assuntos
Doenças do Sistema Digestório/diagnóstico , Doenças do Sistema Digestório/terapia , Endoscopia do Sistema Digestório , Inteligência Artificial , Humanos , Sensibilidade e Especificidade
6.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069068

RESUMO

MADS-box genes are involved in various developmental processes including vegetative development, flower architecture, flowering, pollen formation, seed and fruit development. However, the function of most MADS-box genes and their regulation mechanism are still unclear in woody plants compared with model plants. In this study, a MADS-box gene (CiMADS43) was identified in citrus. Phylogenetic and sequence analysis showed that CiMADS43 is a GOA-like Bsister MADS-box gene. It was localized in the nucleus and as a transcriptional activator. Overexpression of CiMADS43 promoted early flowering and leaves curling in transgenic Arabidopsis. Besides, overexpression or knockout of CiMADS43 also showed leaf curl phenotype in citrus similar to that of CiMADS43 overexpressed in Arabidopsis. Protein-protein interaction found that a SEPALLATA (SEP)-like protein (CiAGL9) interacted with CiMADS43 protein. Interestingly, CiAGL9 also can bind to the CiMADS43 promoter and promote its transcription. Expression analysis also showed that these two genes were closely related to seasonal flowering and the development of the leaf in citrus. Our findings revealed the multifunctional roles of CiMADS43 in the vegetative and reproductive development of citrus. These results will facilitate our understanding of the evolution and molecular mechanisms of MADS-box genes in citrus.


Assuntos
Citrus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Citrus/genética , Citrus/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/genética , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA