Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Plant Cell Environ ; 47(5): 1486-1502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38238896

RESUMO

For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinação , Calcineurina/genética , Calcineurina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sementes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
2.
BMC Med Genomics ; 17(1): 32, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254107

RESUMO

BACKGROUND: Mutations in MPZL2, the characteristic genetic etiology of autosomal recessive deafness loci 111 (DFNB111), cause non-syndromic and moderate sensorineural hearing loss. METHODS: In this study, we analyzed the phenotype and genotype of eight pedigrees consisting of 10 hearing loss patients with bi-allelic pathogenic or likely pathogenic variants in MPZL2. These patients were identified from a 3272 Chinese patient cohort who underwent genetic testing. RESULTS: Apart from symmetrical and moderate sensorineural hearing loss, the MPZL2-related phenotype was characterized by progressive hearing loss with variation in the onset age (congenital defect to onset at the young adult stage). We determined that in the Chinese population, the genetic load of MPZL2 defects was 0.24% (8/3272) in patients diagnosed with hearing loss and 7.02% (8/114) in patients diagnosed with hereditary moderate sensorineural hearing loss caused by STRC, OTOA, OTOG, OTOGL, TECTA, MPZL2 and others. Three known MPZL2 variants (c.220C > T (p.Gln74*), c.68delC (p.Pro23Leufs*2), c.463delG (p.Ala155Leufs*10)) and a novel start loss variant (c.3G > T (p.Met1?)) were identified. MPZL2 c.220C > T was identified as the hotspot variant in the Chinese population and even in East Asia compared with c.72delA (p.Ile24Metfs*22) in European and West Asia through allele frequency. CONCLUSIONS: We concluded that apart from moderate HL, progressive HL is another character of MPZL2-related HL. No specified variant was verified for the progression of HL, the penetrance and expressivity cannot be determined yet. A novel MPZL2 variant at the start codon was identified, enriching the variant spectrum of MPZL2. The hotspot variants of MPZL2 vary in different ethnicities. This study provides valuable data for the diagnosis, prognosis evaluation and genetic counseling of patients with moderate sensorineural hearing loss related to MPZL2.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Adulto Jovem , Povo Asiático/genética , Moléculas de Adesão Celular , China , Surdez/etnologia , Surdez/genética , Perda Auditiva Neurossensorial/etnologia , Perda Auditiva Neurossensorial/genética , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana
3.
Hum Vaccin Immunother ; 20(1): 2300156, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38189143

RESUMO

In 2019, we conducted a cross-sectional study for polio virus seroprevalence in Guangdong province, China. We assessed the positivity rates of poliomyelitis NA and GMT in serum across various demographic groups, and the current findings were compared with pre-switch data from 2014. Using multistage random sampling method, four counties/districts were randomly selected per city, and within each, one general hospital and two township hospitals were chosen. Healthy individuals coming for medical checkups or vaccination were invited. A total of 1318 individual samples were collected and tested. In non-newborn population, age-dependent positivity rates ranged from 77.8% to 100% for PV1 NA and 70.3% to 98.9% for PV3 NA (p < .01). The lowest GMT values for both types (17.03 and 8.46) occurred in the 20 to <30 years age group, while peak GMTs for PV1 and PV3 were observed in 1 to <2 (340.14) and 0 to <1-year (168.90) age groups, respectively. GMTs for PV1 (P = .002) and PV3 (P = .007) in Eastern Guangdong were lower than those in the other three regions. Male participants showed higher GMTs than females (P = .016 and .033, respectively). In newborn population, both males and females showed higher PV1 NA positivity rates and GMTs compared to PV3 (p < .05). Post-switch PV3 NA positivity rates were higher than pre-switch rates (p = .016). GMTs of both PV1 and PV3 were significantly higher post-switch (p < .001). The positivity rates of NAs and GMTs remain high level, which play an important role in resisting poliomyelitis infection. Effect of the converted immunization program was more pronounced than that before.


Assuntos
Poliomielite , Poliovirus , Feminino , Recém-Nascido , Humanos , Masculino , Estudos Transversais , Prevalência , Estudos Soroepidemiológicos , Poliomielite/epidemiologia , China/epidemiologia , Hospitais Gerais
4.
Am J Otolaryngol ; 45(2): 104118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38041893

RESUMO

PURPOSE: Sublingual immunotherapy (SLIT) has been proven to be an effective and safe treatment for patients with house dust mite (HDM)-induced allergic rhinitis (AR) to achieve short-term and long-term efficacy. This study aimed to investigate the relationship between SLIT duration and long-term efficacy. MATERIALS AND METHODS: This study involved 134 patients who underwent SLIT between 2019 and 2021 (in the 2-year group), between 2018 and 2021(in the 3-year group), or between 2017 and 2021 (in the 4-year group). The total nasal symptoms score (TNSS), total medication score (TMS), visual analogue scale (VAS), the Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) and adverse events (AEs) were assessed at baseline, after treatment (2021) and one year after the treatment completion (2022). The correlation between MiniRQLQ and other indicators was also analyzed. RESULTS: After SLIT, patients in all three groups showed significant improvements in TNSS, TMS, VAS and MiniRQLQ scores (all p < 0.001). These improvements were sustained even one year after SLIT. Patients who received 3-4 years of SLIT showed significant improvement compared with those who received 2 years of SLIT in all clinical outcomes (all p < 0.01). The analysis showed positive correlations between the MiniRQLQ and TNSS, TMS, and VAS (all p < 0.001). No significant difference was observed in the AE rate in all three groups (p > 0.05). CONCLUSION: Different duration of HDM SLIT could generate various short-term and long-term clinical efficacy. The MiniRQLQ could be applied to evaluate SLIT efficacy in clinical practice.


Assuntos
Hipersensibilidade , Rinite Alérgica Perene , Rinite Alérgica , Imunoterapia Sublingual , Humanos , Animais , Qualidade de Vida , Antígenos de Dermatophagoides/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Rinite Alérgica Perene/terapia , Resultado do Tratamento , Pyroglyphidae , Rinite Alérgica/tratamento farmacológico
5.
Environ Sci Pollut Res Int ; 30(57): 120355-120365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37936051

RESUMO

Catalytic destruction of nitrogen oxides (NOx) combined with dust removal technique has attracted much attention, yet the application in the solid waste incineration air pollution control process is still lacking due to the complex flue gas atmosphere. In this work, the Mn-Ce-Co-Ox catalyst-coated polyphenylene sulfide (PPS) filter fiber with efficient dust removal and low-temperature polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) destruction has been prepared with a redox-precipitation method. The catalyst was uniformly grown around the PPS fiber with appropriate catalyst loading. The effects of several key operating parameters (e.g., reaction temperature, catalyst loading amount, and filtration velocity) on the catalytic efficiency were comprehensively investigated. The results show that the Mn-Ce-Co-Ox/PPS has a decomposition yield of 78.0% in PCDD/Fs and 96% in nitric oxide (NO) conversion at 200 °C. The poisoned catalytic filter exhibits a removal efficiency of 88.6% for PCDD/Fs. In addition, the catalytic filter can completely reject particles smaller than 1.0 µm with a low filtration resistance. Therefore, this efficient and energy-conserving catalytic filter shows promising applications in flue gas pollution treatments.


Assuntos
Poluentes Atmosféricos , Dibenzodioxinas Policloradas , Dibenzofuranos Policlorados , Dibenzodioxinas Policloradas/análise , Dibenzofuranos , Temperatura , Óxido Nítrico , Poeira , Oxirredução , Incineração/métodos
6.
Plant Phenomics ; 5: 0092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745912

RESUMO

With the concept of sustainable management of plantations, individual trees with excellent characteristics in plantations have received attention from breeders. To improve and maintain long-term productivity, accurate and high-throughput access to phenotypic characteristics is essential when establishing breeding strategies. Meanwhile, genetic diversity is also an important issue that must be considered, especially for plantations without seed source information. This study was carried out in a ginkgo timber plantation. We used simple sequence repeat (SSR) markers for genetic background analysis and high-density terrestrial laser scanning for growth structural characteristic extraction, aiming to provide a possibility of applying remote sensing approaches for forest breeding. First, we analyzed the genetic diversity and population structure, and grouped individual trees according to the genetic distance. Then, the growth structural characteristics (height, diameter at breast height, crown width, crown area, crown volume, height to living crown, trunk volume, biomass of all components) were extracted. Finally, individual trees in each group were comprehensively evaluated and the best-performing ones were selected. Results illustrate that terrestrial laser scanning (TLS) point cloud data can provide nondestructive estimates of the growth structural characteristics at fine scale. From the ginkgo plantation containing high genetic diversity (average polymorphism information content index was 0.719) and high variation in growth structural characteristics (coefficient of variation ranged from 21.822% to 85.477%), 11 excellent individual trees with superior growth were determined. Our study guides the scientific management of plantations and also provides a potential for applying remote sensing technologies to accelerate forest breeding.

7.
J Plant Physiol ; 287: 154043, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392527

RESUMO

Lamiophlomis rotata is a medicinal plant in Qinghai-Tibet Plateau, in which flavonoid compounds are the major medicinal components. However, it remains unclear how flavonoid metabolism of L. rotata is influenced by soil properties and microbial community. In this study, we collected L. rotata seedlings and rhizosphere soils from five habitats ranging from 3750 to 4270 m of altitude and analyzed the effects of habitat conditions on flavonoid metabolism. The activities of peroxidase, cellulase, and urease were increased with altitude, while those of alkaline phosphatase, alkaline protease, and sucrase were decreased with altitude. Analysis of OTUs showed that the total number of bacterial genera was higher than that of fungal genera. The highest number of fungal genera was 132, and that of bacterial genera was 33 in Batang (BT) town in Yushu County at an altitude of 3880 m, suggesting that the fungal communities may play a critical role in L. rotata rhizosphere soils. Flavonoids in leaves and roots of L. rotata shared a similar pattern, with a trend of increasing levels with altitude. The highest flavonoid content measured, 12.94 mg/g in leaves and 11.43 mg/g in roots, was from Zaduo (ZD) County at an altitude of 4208 m. Soil peroxidases affected quercetin content in leaves of L. rotata, while the fungus Sebacina affected flavonoid content in leaves and roots of L. rotata. The expression of PAL, F3'H, FLS, and FNS genes showed a declining trend in leaves with altitude, while F3H showed an increasing trend in both leaves and roots. Overall, soil physicochemical properties and microbial community affect flavonoid metabolism in L. rotata in Qinghai-Tibet Plateau. The variations in flavonoid content and gene expression as well as their associations with soil factors revealed the complexity of the growth conditions and genetic makeup in L. rotata habitats of Qinghai-Tibet Plateau.


Assuntos
Microbiota , Solo , Tibet , Flavonoides , Expressão Gênica , Microbiologia do Solo
8.
J Am Chem Soc ; 145(24): 13008-13014, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37285283

RESUMO

Transition-metal-catalyzed sila-cycloaddition has been a promising tool for accessing silacarbocycle derivatives, but the approach has been limited to a selection of well-defined sila-synthons. Herein, we demonstrate the potential of chlorosilanes, which are industrial feedstock chemicals, for this type of reaction under reductive nickel catalysis. This work extends the scope of reductive coupling from carbocycle to silacarbocycle synthesis and from single C-Si bond formation to sila-cycloaddition reactions. The reaction proceeds under mild conditions and shows good substrate scope and functionality tolerance, and it offers new access to silacyclopent-3-enes and spiro silacarbocycles. The optical properties of several spiro dithienosiloles as well as structural variations of the products are demonstrated.

9.
J Integr Plant Biol ; 65(9): 2157-2174, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37252889

RESUMO

Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR-cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Antiporters/genética , Antiporters/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vacúolos/metabolismo , Plastídeos/metabolismo , Cátions/metabolismo , Transporte Proteico
10.
Front Microbiol ; 14: 1113616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056748

RESUMO

Climatic change causes obvious seasonal meteorological drought in southern China, yet there is a lack of comprehensive in situ studies on the effects of drought in Eucalyptus plantations. Here, a 50% throughfall reduction (TR) experiment was conducted to investigate the seasonal variations of soil bacterial and fungal communities and functions in a subtropical Eucalyptus plantation and their responses to TR treatment. Soil samples were collected from control (CK) and TR plots in the dry and rainy seasons and were subjected to high-throughput sequencing analysis. Results showed that TR treatment significantly reduced soil water content (SWC) in the rainy season. In CK and TR treatments, fungal alpha-diversity decreased in the rainy season while bacterial alpha-diversity did not change significantly between dry and rainy seasons. Moreover, bacterial networks were more affected by seasonal variations compared with fungal networks. Redundancy analysis showed that alkali hydrolyzed nitrogen and SWC contributed the most to the bacterial and fungal communities, respectively. Functional prediction indicated that the expression of soil bacterial metabolic functions and symbiotic fungi decreased in the rainy season. In conclusion, seasonal variations have a stronger effect on soil microbial community composition, diversity, and function compared with TR treatment. These findings could be used to develop management practices for subtropical Eucalyptus plantations and help maintain soil microbial diversity to sustain long-term ecosystem function and services in response to future changes in precipitation patterns.

11.
PLoS One ; 18(3): e0279192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930609

RESUMO

Salt stress, as a principal abiotic stress, harms the growth and metabolism of rice, thus affecting its yield and quality. The tillering stage is the key growth period that controls rice yield. Prohexadione-calcium (Pro-Ca) can increase the lodging resistance of plants by reducing plant height, but its effects on rice leaves and roots at the tillering stage under salt stress are still unclear. This study aimed to evaluate the ability of foliar spraying of Pro-Ca to regulate growth quality at the rice tillering stage under salt stress. The results showed that salt stress reduced the tillering ability of the rice and the antioxidant enzyme activity in the roots. Salt stress also reduced the net photosynthetic rate (Pn), stomatal conductance (Gs) and intercellular CO2 concentration (Ci) of the rice leaves and increased the contents of osmotic regulatory substances in the leaves and roots. The application of exogenous Pro-Ca onto the leaves increased the tiller number of the rice under salt stress and significantly increased the photosynthetic capacity of the leaves. Additionally, it increased the activities of antioxidant enzymes and the AsA content. The contents of an osmotic regulation substance, malondialdehyde (MDA), and H2O2 in the leaves and roots also decreased. These results suggested that Pro-Ca can increase the tillering ability, photosynthetic capacity, osmotic adjustment substance content levels and antioxidant enzyme activity levels in rice and reduce membrane lipid peroxidation, thus improving the salt tolerance of rice at the tillering stage.


Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/metabolismo , Estresse Salino , Cálcio da Dieta/metabolismo , Plântula
12.
PeerJ ; 11: e14804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778152

RESUMO

Salt stress affects crop quality and reduces crop yields, and growth regulators enhance salt tolerance of crop plants. In this report, we examined the effects of prohexadione-calcium (Pro-Ca) on improving rice (Oryza sativa L.) growth and tillering under salt stress. We found that NaCl stress inhibited the growth of two rice varieties and increased malondialdehyde (MDA) levels, electrolyte leakage, and the activities of the antioxidant enzymes. Foliar application of Pro-Ca reduced seedling height and increased stem base width and lodging resistance of rice. Further analyses showed that Pro-Ca application reduced MDA content, electrolyte leakage, and membrane damage in rice leaves under NaCl stress. Pro-Ca enhanced the net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of rice seedlings, while increasing the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) at the tillering stage under salt stress. Overall, Pro-Ca improves salt tolerance of rice seedlings at the tillering stage by enhancing lodging resistance, reducing membrane damages, and enhancing photosynthesis and antioxidant capacities of rice seedlings.


Assuntos
Antioxidantes , Oryza , Antioxidantes/farmacologia , Cloreto de Sódio/farmacologia , Fotossíntese , Peroxidases/metabolismo , Cálcio da Dieta/farmacologia
13.
Angew Chem Int Ed Engl ; 62(4): e202215703, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36428246

RESUMO

Catalytic, three-component, cross-electrophile reactions have recently emerged as a promising tool for molecular diversification, but studies have focused mainly on the alkyl-carbonations of alkenes. Herein, the scope of this method has been extended to conjugated dienes and silicon chemistry through silylative difunctionalization of 1,3-dienes with chlorosilanes and aryl bromides. The reaction proceeds under mild conditions to afford 1,2-linear-silylated products, a selectivity that is different to those obtained from conventional methods via an intermediary of H(C)-η3 -π-allylmetal species. Preliminary mechanistic studies reveal that chlorosilane reacts with 1,3-diene first and then couples with aryl bromide.


Assuntos
Brometos , Níquel , Níquel/química , Alcenos/química , Polienos , Catálise
14.
J Cancer Res Clin Oncol ; 149(1): 219-230, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36352148

RESUMO

PURPOSE: This study aimed to evaluate the effects of curcumin by co-administration of arsenic trioxide (As2O3) in acute myeloid leukemia (AML) treatment, using network pharmacology and experimental validation. METHODS: Using Pubchem database, Traditional Chinese Medicine Information Database (TCMID) database, and Swiss target prediction database to predict compound-related targets, AML-associated targets were determined using GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. We identify overlapping common targets by comparing Compounds-related and AML-associated targets and using these targets to perform GO and KEGG functional enrichment analyses. Subsequently, these targets were input into the STRING database, and we used Cytoscape to construct protein-protein interaction (PPI) network. Finally, we used KG1-a cells and the AML mouse model to measure the anti-leukemia effects of curcumin and As2O3 and their combination. RESULTS: Compounds and targets screening hinted that 85 intersection targets were predicted in the curcumin treatment of AML, 75 targets in the As2O3 treatment of AML, and 48 targets in the curcumin combined with the As2O3 treatment of AML. GO and KEGG analyses indicated that the top 10 enriched biological processes and top 20 pathways implicated in the therapeutic effects of curcumin and As2O3 on AML, respectively. In addition, network pharmacology screening revealed STAT3, TP53, EP300, MAPK1, and PIK3CA as the top five genes in PPI network of curcumin treatment of AML and TP53, MAPK3, MAPK1, STAT3, and SRC as the top five genes in PPI network of As2O3 treatment of AML. Moreover, the in vitro experiment demonstrated that curcumin combined with As2O3 inhibited proliferation and induced apoptosis in KG1-a cells, and this effect is more substantial than curcumin or As2O3 alone. Mechanistically, the curcumin combined with As2O3 significantly down-regulated the protein expression of JAK2, STAT3, and Bcl-2, and up-regulated the levels of P53, P27, and Bax. In the mouse model, the survival time of mice in each administration group was drawn out to varying degrees, with the most significant prolongation in the curcumin combined with the As2O3 group. CONCLUSION: Our results suggested that curcumin and As2O3 combination therapy exerts more significant anti-leukemia effects in the treatment of AML than curcumin or As2O3 monotherapy by up-regulating p53 pathway and down-regulating the JAK2/STAT3 pathway.


Assuntos
Curcumina , Medicamentos de Ervas Chinesas , Leucemia Mieloide Aguda , Animais , Camundongos , Trióxido de Arsênio , Curcumina/farmacologia , Proteína Supressora de Tumor p53/genética , Farmacologia em Rede , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
15.
Sci Total Environ ; 861: 160607, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460101

RESUMO

People may perceive and expose negative sentiments in days with PM2.5 pollutions, but evidence is still insufficient about the joint effects of PM2.5 and socioeconomic factors on human sentiments. In this study, a total of 8032 facial photos of urban green space visitors were obtained from Sina Weibo in 50 cities of East China and rated for happy, sad, neutral scores and net positive emotion index (NPE; happy minus sad). Seasonal air PM2.5 concentrations were collected from days when people exposed faces in cities that were categorized to medium, large, outsize, and mega sizes according to resident populations (RPs). In summer, people posted lower sad score (11.28 %) than in winter (13.51 %; P = 0.0357) and higher NPE (35.86 %) than in autumn (30.92 %; P = 0.0009). Multivariate linear regression on natural logarithms revealed that factors of gross domestic product per capita (parameter estimate: 0.45), RP (0.59), non-production electricity consumption (0.34), and length of road transport (0.34) together generated positive contributions to posted happy score, while the total retail trade of consumer goods (-1.25) and PM2.5 (-0.50) were perceived as joint depressors on NPE. Overall, cities with more rich households and activated retail sales attracted more people who exposed smiles in weathers with PM2.5 compared to cities where local economy is reliable on heavy industry. The summertime in mega cities will be recommended to enjoy a higher frequency to perceive satisfaction due to exposure to low PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Cidades , Urbanização , Poluentes Atmosféricos/análise , Material Particulado/análise , Projetos Piloto , Poluição do Ar/análise , Parques Recreativos , Monitoramento Ambiental/métodos , China , Fatores Socioeconômicos , Emoções
16.
J Plant Physiol ; 279: 153856, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375401

RESUMO

Lycium chinense is an important medicinal plant in the northwest of China. Flavonoids are the major pharmacological components of L. chinense fruits. However, flavonoid metabolism during fruit development of L. chinense remains to be studied. Here, we analyzed the change of flavonoid contents, enzyme activity, and gene expression during fruit development of L. chinense. We found that flavonoids, anthocyanins, and catechins are the most important components of L. chinense fruits. Flavonoid content was increased with fruit development and was high at the late developmental stage. PAL, CHS, and F3H enzymes played a significant role in flavonoid accumulation in fruits. Transcriptomic analysis showed that anthocyanin pathway, flavonol pathway, flavonoid biosynthesis, and phenylpropanoid synthesis pathway were the major pathways involved in flavonoid metabolism in L. chinense. Gene expression analysis indicated that PAL1 and CHS2 genes were critical for flavonoid metabolism in L. chinense fruits. These discoveries help us understand the dynamic changes in flavonoids during fruit development and enhance the use of L. chinense fruits.


Assuntos
Lycium , Lycium/genética , Frutas/genética , Antocianinas , Reprodução , Flavonoides , Regulação da Expressão Gênica de Plantas
17.
J Plant Physiol ; 279: 153860, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371870

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Produtos Agrícolas/genética , Genoma de Planta/genética
18.
Front Plant Sci ; 13: 1010178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247588

RESUMO

Despite the importance of non-structural carbohydrates (NSC) for growth and survival in woody plants, we know little about whole-tree NSC storage. Here, Catalpa bungei trees fertilized using different schedules, including water and fertilizer integration, hole application, and no fertilization, were used to measure the spatial variations of sugar, starch, and NSC concentrations in the leaf, branch, stem, bark, and root. By calculating the volume of whole-tree NSC pools and the contribution of distinct organs, we were also able to compare the storage under various fertilization regimes. We found that the spatial distribution patterns of each organ undergoing different fertilization regimes were remarkably similar. Height-related increases in the sugar and NSC concentrations of the leaf and bark were observed. The concentrations of sugar and NSC in the branch did not appear to vary longitudinally or horizontally. The sugar and NSC concentrations in the stem fluctuated with height, first falling and then rising. The coarse root contained larger amounts of NSC components in comparison to fine root. Contrary to no fertilization, fertilization enhanced the distribution ratio of the leaf, branch, and stem NSC pools while decreasing the distribution ratio of the root NSC pool. Particularly, the addition of fertilizer and water significantly increased the biomass of the organs, enhancing the carbon sink of each organ and whole-tree in comparison to other fertilization regimes. Our main goal was to strengthen the empirical groundwork for comprehending the functional significance of NSC allocation and stock variations at the organ-level of C. bungei trees.

19.
Front Microbiol ; 13: 948875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118227

RESUMO

Fertilization is a fundamental aspect of global forest management that enhances forest productivity and drastically affects soil microbial communities. However, few studies have investigated the differences and similarities in the responses of below-ground microbial communities to different fertilization schemes. The effects of fertilization regimes on the composition and diversity of soil fungal and bacterial communities were investigated in a young Catalpa bungei plantation in Shandong Province, Eastern China. Soil microbial communities were assessed undergoing three types of fertilization: (i) no fertilization (CK), (ii) hole fertilization (HF), and (iii) the integration of water and fertilizer (WF). We further analyzed the effects of soil depth (i.e., 0-20 and 20-40 cm) on the structure of soil microbial communities. Our results indicated that the diversity of bacteria (e.g., Chao1 and Shannon indices) reduced undergoing fertilization, and WF had a higher negative impact on bacterial diversity than HF. A lower bacterial diversity was observed in the subsoil compared to the topsoil. In contrast to bacterial diversity, fungal diversity had a slightly increasing trend in the fertilized environments. The primary bacterial function was metabolism, which was independent of fertilization or soil depth. Among fungal functional guilds, symbiotic soil fungi decreased obviously in the fertilized stand, whereas saprotrophic fungi increased slowly. According to the structural equation models (SEM), the diversity and composition of bacterial and fungal communities were jointly regulated by soil nutrients (including N and P contents) directly affected by fertilization and soil layer. These findings could be used to develop management practices in temperate forests and help sustain soil microbial diversity to maintain long-term ecosystem function and services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA