Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 586: 216690, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307410

RESUMO

The high mutation rate of CTNNB1 (37 %) and Wnt-ß-catenin signal-associated genes (54 %) has been notified in hepatocellular carcinoma (HCC). The activation of Wnt-ß-catenin signal pathway was reported to be associated with an immune "desert" phenotype, but the underlying mechanism remains unclear. Here we mainly employed orthotopic HCC models to explore on it. Mass cytometry depicted the immune contexture of orthotopic HCC syngeneic grafts, unveiling that the exogenous expression of ß-catenin significantly increased the percentage of myeloid-derived suppressor cells (MDSCs) and decreased the percentage of CD8+ T-cells. Flow cytometry and immunohistochemistry further confirmed the findings. The protein microarray analysis, Western blot and PCR identified PF4 as its downstream regulating cytokine. Intratumorally injection of cytokine PF4 enhanced the accumulation of MDSCs. Knockout of PF4 abolished the effect of ß-catenin on recruiting MDSCs. Chromatin immunoprecipitation and luciferase reporter assay demonstrated that ß-catenin increases the mRNA level of PF4 via binding to PF4's promoter region. In vitro chemotaxis assay and in vivo administration of specific inhibitors identified CXCR3 on MDSCs as receptor for recruiting PF4. Lastly, the significant correlations across ß-catenin, PF4 and MDSCs and CD8+ T-cells infiltration were verified in HCC clinical samples. Our results unveiled HCC tumor cell intrinsic hyperactivation of ß-catenin can recruit MDSC through PF4-CXCR3, which contributes to the formation of immune "desert" phenotype. Our study provided new insights into the development of immunotherapeutic strategy of HCC with CTNNB1 mutation. SIGNIFICANCE: This study identifies PF4-CXCR3-MDSCs as a downstream mechanism underlying CTNNB1 mutation associated immune "desert" phenotype.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supressoras Mieloides , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Neoplasias Hepáticas/patologia , Células Supressoras Mieloides/metabolismo , Receptores CXCR3/metabolismo , Via de Sinalização Wnt/genética
2.
Cell Rep Med ; 5(2): 101375, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278146

RESUMO

Despite considerable efforts to identify human liver cancer genomic alterations that might unveil druggable targets, the systematic translation of multiomics data remains challenging. Here, we report success in long-term culture of 64 patient-derived hepatobiliary tumor organoids (PDHOs) from a Chinese population. A divergent response to 265 metabolism- and epigenetics-related chemicals and 36 anti-cancer drugs is observed. Integration of the whole genome, transcriptome, chromatin accessibility profiles, and drug sensitivity results of 64 clinically relevant drugs defines over 32,000 genome-drug interactions. RUNX1 promoter mutation is associated with an increase in chromatin accessibility and a concomitant gene expression increase, promoting a cluster of drugs preferentially sensitive in hepatobiliary tumors. These results not only provide an annotated PDHO biobank of human liver cancer but also suggest a systematic approach for obtaining a comprehensive understanding of the gene-regulatory network of liver cancer, advancing the applications of potential personalized medicine.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Farmacogenética , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Organoides/patologia , Cromatina/metabolismo
3.
Insects ; 14(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37103203

RESUMO

Pyrethroid resistance of thrips has been reported in many countries, and knockdown resistance (kdr) has been identified as a main mechanism against pyrethroids in many insects. To characterize pyrethroid resistance in Megalurothrips usitatus from the Hainan Province of China, we conducted a biological assay and sequenced the voltage-gated sodium channel gene domain II from M. usitatus field populations. It showed high resistance to the pyrethroids for 2019 and 2020, in which LC50 to lambda-cyhalothrin of M. usitatus was 1683.521 mg/L from Sanya in 2020. The LC50 value of deltamethrin was lower in Haikou than in other locations, which mean the south of Hainan has higher resistance than the north of Hainan. Two mutations of I873S and V1015M were detected in the domain II region of the sodium channel in M. usitatus; however, the mutation frequency of V1015M was only 3.33% and that of I873S was 100%. One is homozygous and the other is a heterozygous mutant type. The three thrips-sensitive strains of sodium channel 873 are highly conserved in amino acids (isoleucine), while the M. usitatus pyrethroid-resistant strains are all serine, so I873S may be related to the resistance of M. usitatus to pyrethroids. The present study will contribute to the understanding of the evolution of pyrethroids resistance and contribute to the development of resistance management of M. usitatus in Hainan.

4.
Gastroenterology ; 164(3): 407-423.e17, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574521

RESUMO

BACKGROUND & AIMS: Lack of thorough knowledge about the complicated immune microenvironment (IM) within a variety of liver metastases (LMs) leads to inappropriate treatment and unsatisfactory prognosis. We aimed to characterize IM subtypes and investigate potential mechanisms in LMs. METHODS: Mass cytometry was applied to characterize immune landscape of a primary liver cancers and liver metastases cohort. Transcriptomic and whole-exome sequencing were used to explore potential mechanisms across distinct IM subtypes. Single-cell transcriptomic sequencing, multiplex fluorescent immunohistochemistry, cell culture, mouse model, Western blot, quantitative polymerase chain reaction, and immunohistochemistry were used for validation. RESULTS: Five IM subtypes were revealed in 100 LMs and 50 primary liver cancers. Patients featured terminally exhausted (IM1) or rare T-cell-inflamed (IM2 and IM3) immune characteristics showed worse outcome. Increased intratumor heterogeneity, enriched somatic TP53, KRAS, APC, and PIK3CA mutations and hyperactivated hypoxia signaling accounted for the formation of vicious subtypes. SLC2A1 promoted immune suppression and desert via increasing proportion of Spp1+ macrophages and their inhibitory interactions with T cells in liver metastatic lesions. Furthermore, SLC2A1 promoted immune escape and LM through inducing regulatory T cells, including regulatory T cells and LAG3+CD4+ T cells in primary colorectal cancer. CONCLUSIONS: The study provided integrated multi-omics landscape of LM, uncovering potential mechanisms for vicious IM subtypes and confirming the roles of SLC2A1 in regulating tumor microenvironment remodeling in both primary tumor and LM lesions.


Assuntos
Neoplasias Hepáticas , Multiômica , Animais , Camundongos , Mutação , Neoplasias Hepáticas/patologia , Sequenciamento do Exoma , Microambiente Tumoral
5.
Phenomics ; 3(6): 549-564, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223688

RESUMO

It is widely recognized that tumor immune microenvironment (TIME) plays a crucial role in tumor progression, metastasis, and therapeutic response. Despite several noninvasive strategies have emerged for cancer diagnosis and prognosis, there are still lack of effective radiomic-based model to evaluate TIME status, let alone predict clinical outcome and immune checkpoint inhibitor (ICIs) response for hepatocellular carcinoma (HCC). In this study, we developed a radiomic model to evaluate TIME status within the tumor and predict prognosis and immunotherapy response. A total of 301 patients who underwent magnetic resonance imaging (MRI) examinations were enrolled in our study. The intra-tumoral expression of 17 immune-related molecules were evaluated using co-detection by indexing (CODEX) technology, and we construct Immunoscore (IS) with the least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression method to evaluate TIME. Of 6115 features extracted from MRI, five core features were filtered out, and the Radiomic Immunoscore (RIS) showed high accuracy in predicting TIME status in testing cohort (area under the curve = 0.753). More importantly, RIS model showed the capability of predicting therapeutic response to anti-programmed cell death 1 (PD-1) immunotherapy in an independent cohort with advanced HCC patients (area under the curve = 0.731). In comparison with previously radiomic-based models, our integrated RIS model exhibits not only higher accuracy in predicting prognosis but also the potential guiding significance to HCC immunotherapy. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00136-8.

6.
NPJ Precis Oncol ; 6(1): 58, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982235

RESUMO

Immunotherapies have been explored in treating solid tumors, albeit with disparate clinical effects in distinct cancer types. Systematic interrogation of immune cells in the tumor microenvironment (TME) is vital to the prediction of immunotherapy response and the development of innovative immunotherapeutics. To comprehensively characterize the immune microenvironment in advanced biliary tract cancer (BTC), we utilized single-cell RNA sequencing in unselected viable cells from 16 matched samples, and identified nineteen cell subsets from a total of 45,851 cells, in which exhausted CD8+ T cells, macrophages, and dendritic cells (DCs) in BTC were shown to augment and communicate within the TME. Transcriptional profiles coupled with T cell receptor (TCR) sequences revealed that exhausted CD8+ T cells retained clonal expansion and high proliferation in the TME, and some of them highly expressed the endoplasmic reticulum stress (ER) response gene, XBP1, indicating the role of ER stress in remodeling TME. Functional assays demonstrated that XBP1 and common immune checkpoints (PD1, TIGIT) were significantly upregulated in CD8+ T cells cocultured within the TME of BTC cells (GBC-SD, HCCC-9810). When treating the coculture groups with the specific inhibitor of IRE1α-XBP1 (4µ8C), the downregulation of TIGIT was observed in the treatment group. Collectively, comprehensive transcriptome profiling provides deep insights into the immune atlas in advanced BTC, which might be instrumental in exploring innovative immunotherapy strategies.

7.
Adv Sci (Weinh) ; 9(22): e2105810, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665491

RESUMO

Neoantigen-directed therapy lacks preclinical models recapitulating neoantigen characteristics of original tumors. It is urgent to develop a platform to assess T cell response for neoantigen screening. Here, immunogenic potential of neoantigen-peptides of tumor tissues and matched organoids (n = 27 pairs) are analyzed by Score tools with whole genome sequencing (WGS)-based human leukocyte antigen (HLA)-class-I algorithms. The comparisons between 9203 predicted neoantigen-peptides from 2449 mutations of tumor tissues and 9991 ones from 2637 mutations of matched organoids demonstrate that organoids preserved majority of genetic features, HLA alleles, and similar neoantigen landscape of original tumors. Higher neoantigen load is observed in tumors with early stage. Multiomics analysis combining WGS, RNA-seq, single-cell RNA-seq, mass spectrometry filters out 93 candidate neoantigen-peptides with strong immunogenic potential for functional validation in five organoids. Immunogenic peptides are defined by inducing increased CD107aCD137IFN-γ expressions and IFN-γ secretion of CD8 cells in flow cytometry and enzyme-linked immunosorbent assay assays. Nine immunogenic peptides shared by at least two individuals are validated, including peptide from TP53R90S . Organoid killing assay confirms the antitumor activity of validated immunogenic peptide-reactive CD8 cells, which is further enhanced in the presence of immune checkpoint inhibitors. The study characterizes HLA-class-I neoantigen landscape in hepatobiliary tumor, providing practical strategy with tumor organoid model for neoantigen-peptide identification in personalized immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Antígenos de Neoplasias/genética , Antígenos de Histocompatibilidade Classe I , Humanos , Neoplasias/terapia , Organoides , Peptídeos
8.
Liver Int ; 42(1): 135-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459095

RESUMO

BACKGROUND & AIMS: Preoperative obstructive jaundice is usually associated with higher post-operative mortality. Although external biliary drainage (EBD) has been widely used to relieve obstructive jaundice, the role of bile reinfusion after EBD is still controversial. The aim of our study was to study the effects of biliary obstruction, biliary drainage and bile reinfusion on bile acid metabolism and gut microbiota. METHODS: Firstly, we created a mice bile drainage collection (BDC) model to simulate the process of biliary obstruction, drainage and bile reinfusion. Then, we analysed the faecal, serum, liver and bile samples to investigate the effects of the process on bile acid profiles and gut microbiota. Finally, we evaluated the clinical effects of bile reinfusion. RESULTS: We evaluated the bile acid profiles of faeces, serum, liver and bile of normal mice. During biliary obstruction, secondary bile acids can still be produced, and increased in the liver and serum of mice. Compared with no bile reinfusion, bile reinfusion was beneficial to the recovery of T-ωMCA in the liver and bile, and can restore the colon crypt length shortened by biliary obstruction. Only Ruminococcus_1 proliferated when the biliary obstruction lasted for 12 days. In the clinic, bile reinfusion cannot accelerate the patient's perioperative recovery or prolong long-term survival. CONCLUSION: We have successfully created a mice bile drainage collection model. Short-term bile reinfusion can partially benefit the recovery of the secondary bile acids in the liver and bile, but hardly benefit the patient's perioperative recovery or long-term survival. (247 words).


Assuntos
Colestase , Microbioma Gastrointestinal , Animais , Bile , Ácidos e Sais Biliares , Drenagem , Camundongos
9.
Sci Adv ; 7(51): eabg3750, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919432

RESUMO

Heterogeneity is the major challenge for cancer prevention and therapy. Here, we first constructed high-resolution spatial transcriptomes of primary liver cancers (PLCs) containing 84,823 spots within 21 tissues from seven patients. The progressive comparison of spatial tumor microenvironment (TME) characteristics from nontumor to leading-edge to tumor regions revealed that the tumor capsule potentially affects intratumor spatial cluster continuity, transcriptome diversity, and immune cell infiltration. Locally, we found that the bidirectional ligand-receptor interactions at the 100-µm-wide cluster-cluster boundary contribute to maintaining intratumor architecture and the PROM1+ and CD47+ cancer stem cell niches are related to TME remodeling and tumor metastasis. Last, we proposed a TLS-50 signature to accurately locate tertiary lymphoid structures (TLSs) spatially and unveiled that the distinct composition of TLSs is shaped by their distance to tumor cells. Our study provides previous unknown insights into the diverse tumor ecosystem of PLCs and has potential benefits for cancer intervention.

10.
Cancer Biol Med ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591416

RESUMO

The Wnt/ß-catenin signaling pathway regulates many aspects of tumor biology, and many studies have focused on the role of this signaling pathway in tumor cells. However, it is now clear that tumor development and metastasis depend on the two-way interaction between cancer cells and their environment, thereby forming a tumor microenvironment (TME). In this review, we discuss how Wnt/ß-catenin signaling regulates cross-interactions among different components of the TME, including immune cells, stem cells, tumor vasculature, and noncellular components of the TME in hepatocellular carcinoma. We also investigate their preclinical and clinical insights for primary liver cancer intervention, and explore the significance of using Wnt/ß-catenin mutations as a biomarker to predict resistance in immunotherapy.

11.
Hepatology ; 74(6): 3249-3268, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343359

RESUMO

BACKGROUND AND AIMS: Metabolic reprogramming plays an important role in tumorigenesis. However, the metabolic types of different tumors are diverse and lack in-depth study. Here, through analysis of big databases and clinical samples, we identified a carbamoyl phosphate synthetase 1 (CPS1)-deficient hepatocellular carcinoma (HCC) subtype, explored tumorigenesis mechanism of this HCC subtype, and aimed to investigate metabolic reprogramming as a target for HCC prevention. APPROACH AND RESULTS: A pan-cancer study involving differentially expressed metabolic genes of 7,764 tumor samples in 16 cancer types provided by The Cancer Genome Atlas (TCGA) demonstrated that urea cycle (UC) was liver-specific and was down-regulated in HCC. A large-scale gene expression data analysis including 2,596 HCC cases in 7 HCC cohorts from Database of HCC Expression Atlas and 17,444 HCC cases from in-house hepatectomy cohort identified a specific CPS1-deficent HCC subtype with poor clinical prognosis. In vitro and in vivo validation confirmed the crucial role of CPS1 in HCC. Liquid chromatography-mass spectrometry assay and Seahorse analysis revealed that UC disorder (UCD) led to the deceleration of the tricarboxylic acid cycle, whereas excess ammonia caused by CPS1 deficiency activated fatty acid oxidation (FAO) through phosphorylated adenosine monophosphate-activated protein kinase. Mechanistically, FAO provided sufficient ATP for cell proliferation and enhanced chemoresistance of HCC cells by activating forkhead box protein M1. Subcutaneous xenograft tumor models and patient-derived organoids were employed to identify that blocking FAO by etomoxir may provide therapeutic benefit to HCC patients with CPS1 deficiency. CONCLUSIONS: In conclusion, our results prove a direct link between UCD and cancer stemness in HCC, define a CPS1-deficient HCC subtype through big-data mining, and provide insights for therapeutics for this type of HCC through targeting FAO.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Animais , Carbamoil-Fosfato Sintase (Amônia)/deficiência , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Metilação de DNA , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Distúrbios Congênitos do Ciclo da Ureia/enzimologia , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia
12.
Front Immunol ; 12: 669150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267748

RESUMO

Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel treatment and has been clinically accepted as a major therapeutic strategy for cancer. Gut microbiota is related to cancer and the effect of immune checkpoint inhibitors (ICIs), and supplement with specific bacterial species can restore or enhance the responses to the ICIs. Namely, specified bacteria can serve as the biomarkers for distinguishing the patient who will respond to ICIs and determine the effectiveness of ICIs, as well as predicting the efficacy of checkpoint inhibitor immunotherapy. Regardless of the significant findings, the relationship between gut microbiota and the effect of ICIs treatment needs a more thorough understanding to provide more effective therapeutic plans and reduce treatment complication. In this review, we summarized the role of gut microbiota played in immune system and cancer. We mainly focus on the relationship between gut microbiota and the checkpoint inhibitor immunotherapy.


Assuntos
Bactérias/imunologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral/imunologia , Imunidade Adaptativa , Animais , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Neoplasias/dietoterapia , Neoplasias/imunologia , Neoplasias/microbiologia , Probióticos/uso terapêutico , Resultado do Tratamento
13.
Cancer Res ; 81(18): 4778-4793, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34301762

RESUMO

N6-methyladenosine (m6A) has been reported as an important mechanism of posttranscriptional regulation. Programmed death-ligand 1 (PD-L1) is a primary immune inhibitory molecule expressed on tumor cells that promotes immune evasion. Here we report ALKBH5 as an important m6A demethylase that orchestrates PD-L1 expression in intrahepatic cholangiocarcinoma (ICC). Regulation of PD-L1 expression by ALKBH5 was confirmed in human ICC cell lines. Sequencing of the m6A methylome identified PD-L1 mRNA as a direct target of m6A modification whose levels were regulated by ALKBH5. Furthermore, ALKBH5 and PD-L1 mRNA were shown to interact. ALKBH5 deficiency enriched m6A modification in the 3'UTR region of PD-L1 mRNA, thereby promoting its degradation in a YTHDF2-dependent manner. In vitro and in vivo, tumor-intrinsic ALKBH5 inhibited the expansion and cytotoxicity of T cells by sustaining tumor cell PD-L1 expression. The ALKBH5-PD-L1-regulating axis was further confirmed in human ICC specimens. Single-cell mass cytometry analysis unveiled a complex role of ALKBH5 in the tumor immune microenvironment by promoting the expression of PD-L1 on monocytes/macrophages and decreasing the infiltration of myeloid-derived suppressor-like cells. Analysis of specimens from patients receiving anti-PD1 immunotherapy suggested that tumors with strong nuclear expression patterns of ALKBH5 are more sensitive to anti-PD1 immunotherapy. Collectively, these results describe a new regulatory mechanism of PD-L1 by mRNA epigenetic modification by ALKBH5 and the potential role of ALKBH5 in immunotherapy response, which might provide insights for cancer immunotherapies. SIGNIFICANCE: This study identifies PD-L1 mRNA as a target of ALKBH5 and reveals a role for ALKBH5 in regulating the tumor immune microenvironment and immunotherapy efficacy.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Antígeno B7-H1/genética , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/metabolismo , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunomodulação , Camundongos , Ligação Proteica , Estabilidade de RNA , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
14.
NPJ Precis Oncol ; 4: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145436

RESUMO

Immunotherapy is a powerful therapeutic strategy for end-stage hepatocellular carcinoma (HCC). It is well known that T cells, including CD8+PD-1+ T cells, play important roles involving tumor development. However, their underlying phenotypic and functional differences of T cell subsets remain unclear. We constructed single-cell immune contexture involving approximate 20,000,000 immune cells from 15 pairs of HCC tumor and non-tumor adjacent tissues and 10 blood samples (including five of HCCs and five of healthy controls) by mass cytometry. scRNA-seq and functional analysis were applied to explore the function of cells. Multi-color fluorescence staining and tissue micro-arrays were used to identify the pathological distribution of CD8+PD-1+CD161 +/- T cells and their potential clinical implication. The differential distribution of CD8+ T cells subgroups was identified in tumor and non-tumor adjacent tissues. The proportion of CD8+PD1+CD161+ T cells was significantly decreased in tumor tissues, whereas the ratio of CD8+PD1+CD161- T cells was much lower in non-tumor adjacent tissues. Diffusion analysis revealed the distinct evolutionary trajectory of CD8+PD1+CD161+ and CD8+PD1+CD161- T cells. scRNA-seq and functional study further revealed the stronger immune activity of CD8+PD1+CD161+ T cells independent of MHC class II molecules expression. Interestingly, a similar change in the ratio of CD8+CD161+/ CD8+CD161- T cells was also found in peripheral blood samples collected from HCC cases, indicating their potential usage clinically. We here identified different distribution, function, and trajectory of CD8+PD-1+CD161+ and CD8+PD-1+CD161- T cells in tumor lesions, which provided new insights for the heterogeneity of immune environment in HCCs and also shed light on the potential target for immunotherapy.

15.
Adv Sci (Weinh) ; 7(13): 2000224, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32670760

RESUMO

The spatial heterogeneity of immune microenvironment in hepatocellular carcinoma (HCC) remains elusive. Here, a single-cell study involving 17 432 600 immune cells of 39 matched HCC (T), nontumor (N), and leading-edge (L) specimens by mass cytometry is conducted. The tumor-associated CD4/CD8 double-positive T (DPT) cells are found enriched in L regions with synergetic expression of PD-1/HLA-DR/ICOS/CD45RO and exhibit a higher level of IFN-γ, TNF-α, and PD-1 upon stimulation. The enrichment of DPT and PD-1+DPT in L regions indicates favorable prognosis. These tumor-associated DPT cells with similar phenotype are also verified in other tumors and HCC animal models. Single-cell RNA-seq further characterizes the molecular features of DPT cells and uncovers 11 clusters with different cytotoxicity, exhaustion, and activation scores. TCR-based trajectory analysis reveals that tumor-associated DPT clusters share separated ancestries with local CD4+ or CD8+SPT cells rather than CD3+PBMC cells. TCR clones with frequency above 10 are mainly found coexisting in DPT and CD8+SPT cells. Specifically, PD-1highDPT cluster (TDPT_10) shares the same ancestry with exhausted CD8+SPT cluster (TCD8T_2) and shows higher expression similarity and closer pathological location to PD-1+CD8+ than PD-1+CD4+T cells. Together, this study systematically characterizes the unique distribution of PD-1+DPTs in HCC and puts forward new insights for the function and origin of tumor-associated DPT cells.

16.
Acta Pharmacol Sin ; 36(3): 362-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619389

RESUMO

AIM: To investigate the effects of piperlongumine (PL), an anticancer alkaloid from long pepper plants, on the primary myeloid leukemia cells from patients and the mechanisms of action. METHODS: Human BM samples were obtained from 9 patients with acute or chronic myeloid leukemias and 2 patients with myelodysplastic syndrome (MDS). Bone marrow mononuclear cells (BMMNCs) were isolated and cultured. Cell viability was determined using MTT assay, and apoptosis was examined with PI staining or flow cytometry. ROS levels in the cells were determined using DCFH-DA staining and flow cytometry. Expression of apoptotic and autophagic signaling proteins was analyzed using Western blotting. RESULTS: PL inhibited the viability of BMMNCs from the patients with myeloid leukemias (with IC50 less than 20 µmol/L), but not that of BMMNCs from a patient with MDS. Furthermore, PL (10 and 20 µmol/L) induced apoptosis of BMMNCs from the patients with myeloid leukemias in a dose-dependent manner. PL markedly increased ROS levels in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the antioxidant N-acetyl-L-cysteine abolished PL-induced ROS accumulation and effectively reduced PL-induced cytotoxicity. Moreover, PL markedly increased the expression of the apoptotic proteins (Bax, Bcl-2 and caspase-3) and autophagic proteins (Beclin-1 and LC3B), and phosphorylation of p38 and JNK in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the specific p38 inhibitor SB203580 or the specific JNK inhibitor SP600125 partially reversed PL-induced ROS production, apoptotic/autophagic signaling activation and cytotoxicity. CONCLUSION: Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Dioxolanos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antioxidantes/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Concentração Inibidora 50 , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Fosforilação , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA