Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(22): 8295-8310, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846397

RESUMO

Semi-crystalline polymers (SCPs) with anisotropic amorphous and crystalline domains as the basic skeleton are ubiquitous from natural products to synthetic polymers. The combination of chemically incompatible hard and soft phases contributes to unique thermal and mechanical properties. The further introduction of supramolecular interactions as noncovalently interacting crystal phases and soft dynamic crosslinking sites can synergize with covalent polymer chains, thereby enabling effective energy dissipation and dynamic rearrangement in hierarchical superstructures. Therefore, this review will focus on the design principles of SCPs by discussing supramolecular construction strategies and state-of-the-art functional applications from mechanical toughening to sophisticated functions such as dynamic adaptivity, shape memory, ion transport, etc. Current challenges and further opportunities are discussed to provide an overview of possible future directions and potential material applications.

2.
Angew Chem Int Ed Engl ; : e202406708, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828797

RESUMO

Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds. The obtained plasticity enables recycle without altering the chemical structure or mechanical properties, and is also found to be vital for achieving shape memory functions with complex spatial structures. This metathesis reaction as a new dynamic crosslinker of polymer networks has the potential to accelerate the ongoing exploration of malleable and functional thermoset polymers.

3.
Angew Chem Int Ed Engl ; : e202407385, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736176

RESUMO

Circularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near-infrared (NIR) CPL-active materials, especially those that exhibit high glum values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR-CPL with a glum value of 2.5×10-2 was achieved through supramolecular coassembly and energy-transfer strategies. The chiral assemblies formed by the coassembly between adenosine triphosphate (ATP) and a pyrene derivative exhibited a red CPL signal (glum of 10-3). The further introduction of sulfo-cyanine5 resulted in a energy-transfer process, which not only led to the NIR CPL but also increased the glum value to 10-2. Temporal control of these chiral assemblies was realized by introducing alkaline phosphatase to fabricate a biomimetic enzyme-catalyzed network, allowing the dynamic NIR CPL signal to be turned on. Based on these enzyme-regulated temporally controllable dynamic CPL-active chiral assemblies, a multilevel information encryption system was further developed. This study provides a pioneering example for the construction of dynamic NIR CPL materials with the ability to perform temporal control via the supramolecular assembly strategy, which is expected to aid in the design of supramolecular complex systems that more closely resemble natural biological systems.

4.
Nat Commun ; 15(1): 3855, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719820

RESUMO

Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.

5.
Adv Mater ; : e2403880, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723049

RESUMO

Classic approaches to integrate flexible capacitive sensor performance are to on-demand microstructuring dielectric layers and to adjust dielectric material compositions via the introduction of insoluble carbon additives (to increase sensitivity) or dynamic interactions (to achieve self-healing). However, the sensor's enhanced performances often come with increased material complexity, discouraging its circular economy. Herein, a new intrinsic self-healable, closed-loop recyclable dielectric layer material, a fully nature-derived dynamic covalent poly(disulfide) decorated with rich H bonding and metal-catechol complexations is introduced. The polymer network possesses a mechanically ductile character with an Arrhenius-type temperature-dependent viscoelasticity. The assembled capacitive pressure sensor is able to achieve a sensitivity of up to 9.26 kPa-1, fast response/recovery time of 32/24 ms, and can deliver consistent signals of continuous consecutive cycles even after being self-healed or closed-loop recycled for real-time detection of human motions. This is expected to be of high interest for current capacitive sensing research to move toward a life-like, high performance, and circular economy direction.

6.
Sci Bull (Beijing) ; 69(9): 1237-1248, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458915

RESUMO

Simultaneously achieving room-temperature phosphorescence (RTP) and multiple-stimuli responsiveness in a single-component system is of significance but remains challenging. Crystallization has been recognized to be a workable strategy to fulfill the above task. However, how the molecular packing mode affects the intersystem crossing and RTP lifetime concurrently remains unclear so far. Herein, four economic small-molecular compounds, analogues of the famous drug raloxifene (RALO), are facilely synthesized and further explored as neat single-component and stimuli-responsive RTP emitters via crystallization engineering. Thanks to their simple structures and high ease to crystallize, these raloxifene analogues function as models to clarify the important role of molecular packing in the RTP and stimuli-responsiveness properties. Thorough combination of the single-crystal structure analysis and theoretical calculations clearly manifests that the tight antiparallel molecular packing mode is the key point to their RTP behaviors. Interestingly, harnessing the controllable and reversible phase transitions of the two polymorphs of RALO-OAc driven by mechanical force, solvent vapor, and heat, a single-component multilevel stimuli-responsive platform with tunable emission color is established and further exploited for optical information encryption. This work would shed light on the rational design of multi-stimuli responsive RTP systems based on single-component organics.

7.
Nat Commun ; 15(1): 1690, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402228

RESUMO

The incorporation of mechanically interlocked structures into polymer backbones has been shown to confer remarkable functionalities to materials. In this work, a [c2]daisy chain unit based on dibenzo-24-crown-8 is covalently embedded into the backbone of a polymer network, resulting in a synthetic material possessing remarkable shape-memory properties under thermal control. By decoupling the molecular structure into three control groups, we demonstrate the essential role of the [c2]daisy chain crosslinks in driving the shape memory function. The mechanically interlocked topology is found to be an essential element for the increase of glass transition temperature and consequent gain of shape memory function. The supramolecular host-guest interactions within the [c2]daisy chain topology not only ensure robust mechanical strength and good network stability of the polymer, but also impart the shape memory polymer with remarkable shape recovery properties and fatigue resistance ability. The incorporation of the [c2]daisy chain unit as a building block has the potential to lay the groundwork for the development of a wide range of shape-memory polymer materials.

8.
J Am Chem Soc ; 145(48): 26494-26503, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38000910

RESUMO

The viscosity distribution of micellar interiors from the very center to the outer surface is dramatically varied, which has been distinguished in theoretical models, yet it remains highly challenging to quantify this issue experimentally. Herein, a series of fluorophore-substituted surfactants DPAC-Fn (n = 3, 5, 7, 9, 11, 13, and 15) are developed by functionalizing the different alkyl-trimethylammonium bromides with the butterfly motion-based viscosity sensor, N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC). The immersion depth of DPAC units of DPAC-Fn in cetrimonium bromide (C16TAB) micelles depends on the alkyl chain lengths n. From deep (n = 15) to shallow (n = 3), DPAC-Fn in C16TAB micelles exhibits efficient viscosity-sensitive dynamic multicolor emissions. With external standards for quantification, the viscosity distribution inside a C16TAB micelle with the size of ∼4 nm is changed seriously from high viscosity (∼190 Pa s) in the core center to low viscosity (∼1 Pa s) near the outer surface. This work provides a tailored approach for powerful micelle tools to explore the depth-dependent microviscosity of micellar interiors.

9.
Angew Chem Int Ed Engl ; 62(43): e202310582, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37681477

RESUMO

Introducing photo-responsive molecules offers an attractive approach for remote and selective control and dynamic manipulation of material properties. However, it remains highly challenging how to use a minimal amount of photo-responsive units to optically modulate materials that are inherently inert to light irradiation. Here we show the application of a light-driven rotary molecular motor as a "motorized photo-modulator" to endow a typical H-bond-based gel system with the ability to respond to light irradiation and create a reversible sol-gel transition. The key molecular design feature is the introduction of a minimal amount (2 mol %) of molecular motors into the supramolecular network as photo-switchable non-covalent crosslinkers. Advantage is taken of the subtle interplay of the large geometry change during photo-isomerization of the molecular motor guest and the dynamic nature of a supramolecular gel host system. As a result, a tiny amount of molecular motors is enough to switch the mechanical modulus of the entire supramolecular systems. This study proves the concept of designing photo-responsive materials with minimum use of non-covalent light-absorbing units.

10.
Chem Sci ; 14(25): 7076-7085, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389256

RESUMO

AIE-active photosensitizers (PSs) are promising for antitumor therapy due to their advantages of aggregation-promoted photosensitizing properties and outstanding imaging ability. High singlet-oxygen (1O2) yield, near-infrared (NIR) emission, and organelle specificity are vital parameters to PSs for biomedical applications. Herein, three AIE-active PSs with D-π-A structures are rationally designed to realize efficient 1O2 generation, by reducing the electron-hole distribution overlap, enlarging the difference on the electron-cloud distribution at the HOMO and LUMO, and decreasing the ΔEST. The design principle has been expounded with the aid of time-dependent density functional theory (TD-DFT) calculations and the analysis of electron-hole distributions. The 1O2 quantum yields of AIE-PSs developed here can be up to 6.8 times that of the commercial photosensitizer Rose Bengal under white-light irradiation, thus among the ones with the highest 1O2 quantum yields reported so far. Moreover, the NIR AIE-PSs show mitochondria-targeting capability, low dark cytotoxicity but superb photo-cytotoxicity, and satisfactory biocompatibility. The in vivo experimental results demonstrate good antitumor efficacy for the mouse tumour model. Therefore, the present work will shed light on the development of more high-performance AIE-PSs with high PDT efficiency.

11.
Angew Chem Int Ed Engl ; 62(29): e202305572, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37183891

RESUMO

We demonstrate that a single polycyclic π-scaffold can undergo sequential multistep excited-state structural evolution along the bent, planar, and twisted conformers, which coexist to produce intrinsic multiple fluorescence emissions in room-temperature solution. By installing a methyl or trifluoromethyl group on the ortho-site of N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC), the enhanced steric effects change the fluorescence emission of DPAC from a dominant red band to well-resolved triple bands. The ultra-broadband triple emissions of ortho-substituted DPACs range from ≈350 to ≈850 nm, which is unprecedented for small fluorophores with molecular weight of <500. Ultrafast spectroscopy and theoretical calculations clearly reveal that the above dramatic changes originate from the influence of steric hindrance on the shape of excited state potential energy surface (S1 PES). Compared to the steep S1 PES of parental DPAC, the introduction of ortho-substituent is shown to make the path of structural evolution in S1 wider and flatter, so the ortho-substituted derivatives exhibit slower structural transformations from bent to planar and then to twisted forms, yielding intrinsic triple emission. The results provide the proof of concept that the bent, planar, and twisted emissive states can coexist in the same S1 PES, which greatly expand the fundamental understanding of the excited-state structural relaxation.

12.
ACS Appl Mater Interfaces ; 15(21): 25201-25211, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37014285

RESUMO

The dynamic control of circularly polarized luminescence (CPL) has far-reaching significance in optoelectronics, information storage, and data encryption. Herein, we reported the reversible inversion of CPL in a coassembly supramolecular system consisting of chiral molecules L4, which contain two positively charged viologen units, and achiral ionic surfactant sodium dodecyl sulfate (SDS) by introducing achiral sulforhodamine B (SRB) dye molecules. The chirality of CPL in the coassemblies can be efficiently regulated and inverted by simply adjusting the amount of SRB. A series of experimental characterization, including optical spectroscopy, electron microscope, 1H NMR, and X-ray scattering measurements, suggested that SRB could coassemble with L4/SDS to establish a new stable L4/SDS/SRB supramolecular structure through electrostatic interactions. Moreover, the negative-sign CPL could revert to the positive-sign CPL if titanium dioxide (TiO2) nanoparticles were used to decompose SRB molecules. The evolution of the CPL inversion process could be cycled at least 5 times without a significant decline in CPL signals when SRB was refueled to the system. Our results provide a facile approach to dynamically regulating the handedness of CPL in a multiple-component supramolecular system via achiral species.

13.
Natl Sci Rev ; 10(2): nwac139, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36994382

RESUMO

Developing molecular approaches to the creation of robust and water-resistant adhesive materials promotes a fundamental understanding of interfacial adhesion mechanisms as well as future applications of biomedical adhesive materials. Here, we present a simple and robust strategy that combines natural thioctic acid and mussel-inspired iron-catechol complexes to enable ultra-strong adhesive materials that can be used underwater and simultaneously exhibit unprecedentedly high adhesion strength on diverse surfaces. Our experimental results show that the robust crosslinking interaction of the iron-catechol complexes, as well as high-density hydrogen bonding, are responsible for the ultra-high interfacial adhesion strength. The embedding effect of the hydrophobic solvent-free network of poly(disulfides) further enhances the water-resistance. The dynamic covalent poly(disulfides) network also makes the resulting materials reconfigurable, thus enabling reusability via repeated heating and cooling. This molecule-engineering strategy offers a general and versatile solution to the design and construction of dynamic supramolecular adhesive materials.

14.
Angew Chem Int Ed Engl ; 62(11): e202215329, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602285

RESUMO

Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.

15.
Angew Chem Int Ed Engl ; 62(3): e202214422, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36378119

RESUMO

Enabling dynamically tunable emissive systems offers opportunities for constructing smart materials. Clusteroluminescence, as unconventional luminescence, has attracted increasing attention in both fundamental and applied sciences. Herein, we report a supramolecular poly(disulfides) network with tunable clusteroluminescence. The reticular H-bonds synergize the rigidity and mobility of dynamic networks, and endow the resulting materials with mechanical adaptivity and robustness, simultaneously enabling efficient clusteroluminescence and phosphorescence at 77 K. Orthogonally tunable luminescence are achieved in two manners, i.e., slow backbone disulfide exchange and fast side-chain metal coordination. Further exploration of the reprocessability and chemical closed-loop recycling of intrinsic dynamic networks for sustainable materials is feasible. We foresee that the synergistic strategy of dynamic chemistry offers a novel pathway and potential opportunities for smart emissive materials.

16.
Chemistry ; 28(68): e202202462, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36045479

RESUMO

Dynamic control of molecular photoluminescence offers chemical solutions to designing functional emissive materials. Although stimuli-switchable molecular luminescent systems are well established, how to encode these dynamic emissive systems with a "timing" feature, that is, time-dependent luminescent properties, remains challenging. This Concept aims to summarize the design principles of dynamic timing molecular photoluminescent systems by discussing the state-of-the-art of this topic and the shaping of fabrication strategies at both the molecular and supramolecular levels. An outlook and perspectives are given to outline the future opportunities and challenges in the rational design and potential applications of these smart emissive systems.

17.
Angew Chem Int Ed Engl ; 61(39): e202209100, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35922379

RESUMO

Chemical recycling of synthetic polymers offers a solution for developing sustainable plastics and materials. Here we show that two types of dynamic covalent chemistry can be orthogonalized in a solvent-free polymer network and thus enable a chemically recyclable crosslinked material. Using a simple acylhydrazine-based 1,2-dithiolane as the starting material, the disulfide-mediated reversible polymerization and acylhydrazone-based dynamic covalent crosslinking can be combined in a one-pot solvent-free reaction, resulting in mechanically robust, tough, and processable crosslinked materials. The dynamic covalent bonds in both backbones and crosslinkers endow the network with depolymerization capability under mild conditions and, importantly, virgin-quality monomers can be recovered and separated. This proof-of-concept study show opportunities to design chemically recyclable materials based on the dynamic chemistry toolbox.

18.
Angew Chem Int Ed Engl ; 61(39): e202207405, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35922390

RESUMO

Developing photoresponsive circularly polarized luminescence (CPL) materials is an essential step for biosensing and biomedical applications. However, fabricating CPL assemblies rooted in the chirality amplification and transmission of the molecular building blocks, which simultaneously show photo-controllable CPL signals, remains challenging. Herein, a molecular building block containing an overcrowded-alkene core and bis-PBI (MPBI) was designed. Importantly, the enantiopure MPBI can self-assemble into well-organized nanofibers via π-π stacking interactions and enable the transmission of the intrinsic chirality, providing opposite CPL signals. The photoisomerization of MPBI induced a transformation from nanofibers to discrete nanospheres, accompanied by a gradually decreased CPL signal. The results demonstrated the development of photo-controllable CPL materials from the assembly of chiral MPBI, which provides an alternatively facile strategy to fabricate CPL-active materials and would offer opportunities for future biosensing and biomedical applications.


Assuntos
Alcenos , Luminescência
19.
Nat Commun ; 13(1): 4185, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858917

RESUMO

The development of advanced materials for information encryption with time-dependent features is essential to meet the increasing demand on encryption security. Herein, smart materials with orthogonal and temporal encryption properties are successfully developed based on a dynamic assembly-induced multicolour supramolecular system. Multicolour fluorescence, including blue, orange and even white light emissions, is achieved by controlling the supramolecular assembly of pyrene derivatives by tailoring the solvent composition. By taking advantage of the tuneable fluorescence, dynamically controlled information encryption materials with orthogonal encryption functions, e.g., 3D codes, are successfully developed. Moreover, time-dependent information encryption materials, such as temporal multi-information displays and 4D codes, are also developed by enabling the fluorescence-controllable supramolecular system in the solid phase, showing multiple pieces of information on a time scale, and the correct information can be identified only at a specified time. This work provides an inspiring point for the design of information encryption materials with higher security requirements.

20.
J Am Chem Soc ; 144(22): 10042-10052, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611861

RESUMO

Single-molecule conductance measurements for 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) may offer unique insight into the bent-to-planar photocycle between the ground and excited states. Herein, we employ DPAC derivative DPAC-SMe as the molecular prototype to fabricate single-molecule junctions using the scanning tunneling microscope break junction technique and explore photoconductance dependence on the excited-state structural/electronic changes. We find up to ∼200% conductance enhancement of DPAC-SMe under continuous 340 nm light irradiation than that without irradiation, while photoconductance disappears in the case where structural evolution of the DPAC-SMe is halted through macrocyclization. The in situ conductance modulation as pulsed 340 nm light irradiation is monitored in the DPAC-SMe-based junctions alone, suggesting that the photoconductance of DPAC-SMe stems from photoinduced intramolecular planarization. Theoretical calculations reveal that the photoinduced structural evolution brings about a significant redistribution of the electron cloud density, which leads to the appearance of Fano resonance, resulting in enhanced conductance through the DPAC-SMe-fabricated junctions. This work provides evidence of bent-to-planar photocycle-induced conductance differences at the single-molecule level, offering a tailored approach for tuning the charge transport characteristics of organic photoelectronic devices.


Assuntos
Eletrônica , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA