Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 121: 104533, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637092

RESUMO

Defined starter cultures, containing selected microbes could reduce the complexity of natural starter, are beneficial for controllable food fermentations. However, there are challenges in identifying key microbiota and constructing synthetic microbiota for traditional food fermentations. Here, we aimed to develop a defined starter culture for reproducible profile of flavour compounds, using Chinese Xiaoqu Baijiu fermentation as a case. We classified all microbes into 4 modules using weighted correlation network analysis. Module 3 presented significant correlations with flavour compounds (P < 0.05) and the highest gene abundance related with flavour compound production. 13 dominant species in module 3 were selected for mixed culture fermentation, and each species was individually deleted to analyse the effect on flavour compound production. Ten species, presenting significant effects (P < 0.05) on flavour compound production, were selected for developing the starter culture, including Rhizopus oryzae, Rhizopus microsporus, Saccharomyces cerevisiae, Pichia kudriavzevii, Wickerhamomyces anomalus, Lactobacillus acetotolerans, Levilactobacillus brevis, Weissella paramesenteroides, Pediococcus acidilactici, and Leuconostoc pseudomesenteroides. After optimising the structure of the starter culture, the profile similarity of flavour compounds produced by the starter culture reached 81.88% with that by the natural starter. This work indicated feasibility of reproducible profile of flavour compounds with defined starter culture for food fermentations.


Assuntos
Microbiota , Fermentação , Saccharomyces cerevisiae , China
2.
J Agric Food Chem ; 71(43): 15926-15941, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856872

RESUMO

To achieve an adequate sense of sweetness with a healthy low-sugar diet, it is necessary to explore and produce sugar alternatives. Recently, glycoside sweeteners and their biosynthetic approaches have attracted the attention of researchers. In this review, we first outlined the synthetic pathways of glycoside sweeteners, including the key enzymes and rate-limiting steps. Next, we reviewed the progress in engineered microorganisms producing glycoside sweeteners, including de novo synthesis, whole-cell catalysis synthesis, and in vitro synthesis. The applications of metabolic engineering strategies, such as cofactor engineering and enzyme modification, in the optimization of glycoside sweetener biosynthesis were summarized. Finally, the prospects of combining enzyme engineering and machine learning strategies to enhance the production of glycoside sweeteners were discussed. This review provides a perspective on synthesizing glycoside sweeteners in microbial cells, theoretically guiding the bioproduction of glycoside sweeteners.


Assuntos
Glicosídeos , Edulcorantes , Açúcares , Engenharia Metabólica
3.
Foods ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569161

RESUMO

Traditional fermented foods are favored by people around the world for their positive health and taste advantages. Many of the fermented foods, including Chinese traditional fermented foods, are produced through mixed-culture fermentation. Apart from reducing the formation of harmful compounds such as ethyl carbamate (EC) and biogenic amines (BAs) during food fermentation, it is also difficult to precisely control and regulate the fermentation process based on the control of environmental conditions alone, due to the complex microbiota and an unclarified fermentation mechanism. In this review, key microorganisms involved in Chinese fermented foods such as baijiu, soy sauce, and vinegar production are elaborated, and relations between microbial composition and the aroma or quality of food are discussed. This review focuses on the interpretation of functions and roles of beneficial (functional) microorganisms that participate in food fermentation and the discussion of the possibilities of the synergistic use of functional microorganisms to improve the safety and quality of Chinese fermented foods. Conducting work toward the isolation of beneficial microorganisms is a challenge for modern food fermentation technology. Thus, methods for the isolation and mutagenesis of functional microbial strains for synergistic food fermentation are summarized. Finally, the limitations and future prospects of the use of functional microorganisms in traditional Chinese fermented foods are reviewed. This review provides an overview of the applications of synergistic fermentation with functional microorganisms in the improvement of the safety or sensory qualities of fermented foods.

4.
Food Microbiol ; 114: 104305, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290868

RESUMO

Most traditional fermented foods are produced by spontaneous fermentation. It is difficult to produce traditional fermented foods with desired flavor compound profile. In this study, using Chinese liquor fermentation as a case, we aimed to directionally control flavor compound profile in food fermentation. Twenty key flavor compounds were identified in 80 Chinese liquor fermentations. Six microbial strains, identified as high producers of these key flavor compounds, were used to generate the minimal synthetic microbial community. A mathematical model was established to link the structure of the minimal synthetic microbial community and the profile of these key flavor compounds. This model could generate the optimal structure of synthetic microbial community to produce flavor compounds with desired profile. This work provided a strategy to realize the directional control of flavor compound profile via controlling the structure of the synthetic microbial community in Chinese liquor fermentation.


Assuntos
Bebidas Alcoólicas , Microbiota , Bebidas Alcoólicas/análise , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA