Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39194891

RESUMO

Populus euphratica, Tamarix ramosissima, and Sophora alopecuroides are, respectively, typical arboreal, shrubby, and herbaceous species in oases of arid regions. It is important to study the difference in metabolic characteristics of the rhizosphere fungal community of these plant species and their relationships with soil factors for the preservation of delicate arid oasis ecosystems with future environmental changes. In this study, we, respectively, collected 18 rhizosphere soil samples of P. euphratica, T. ramosissima, and S. alopecuroides to explore the difference in rhizosphere fungal metabolic characteristics of different plant life forms and their underlying driving factors. The results showed that (1) soil physicochemical properties (including soil water content, pH, etc.) were significantly different among different plant species (p < 0.05). (2) Rhizosphere fungal metabolic characteristics were significantly different between S. alopecuroides and T. ramosissima (ANOSIM, p < 0.05), which was mainly caused by the different utilization of carboxylic carbon. (3) The RDA showed that the main driving factors of the variations in rhizosphere fungal metabolic characteristics were different among different plant species. The main explanatory variables of the variations in the metabolic characteristics of the rhizosphere fungal community were carbon to nitrogen ratio (23%) and available potassium (17.4%) for P. euphratica, while soil organic carbon (23.1%), pH (8.6%), and total nitrogen (8.2%) for T. ramosissima, and soil clay content (36.6%) and soil organic carbon (12.6%) for S. alopecuroides. In conclusion, the variations in rhizosphere fungal metabolic characteristics in arid oases are dominantly affected by soil factors rather than plant life forms.

2.
Sci Total Environ ; 951: 175291, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39117227

RESUMO

Although ozone (O3) pollution affects plant growth and monoterpene (MT) emissions, the responses of MT emission rates to elevated O3 and the related mechanisms are not entirely understood. To gain an insight into these effects and mechanisms, we evaluated physiological (leaf MT synthesis ability, including precursor availability and enzyme kinetics) and physicochemical limiting factors (e.g. leaf thickness of the lower and upper epidermis, palisade and spongy tissue, and size of resin ducts and stomatal aperture) affecting MT emissions simultaneously from two broad-leaved and two coniferous species after one growing season of field experiment. The effects of elevated O3 on MT emissions and the related mechanisms differed between plant functional types. Specifically, long-term moderate O3 exposure significantly reduced MT emissions in broad-leaved species, primarily attributed to a systematic decrease in MT synthesis ability, including reductions in all MT precursors, geranyl diphosphate content, and MT synthase protein levels. In contrast, the same O3 exposure significantly enhanced MT emissions in coniferous species. However, the change in MT emissions in coniferous species was not due to modifications in leaf MT synthesis ability but rather because of alterations in leaf anatomical structure characteristics, particularly the size of resin ducts and stomatal aperture. These findings provide an important understanding of the mechanisms driving MT emissions from different tree functional groups and can enlighten the estimation of MT emissions in the context of O3 pollution scenarios as well as the development of MT emission algorithms.


Assuntos
Poluentes Atmosféricos , Monoterpenos , Ozônio , Folhas de Planta , Traqueófitas , Poluentes Atmosféricos/toxicidade , Monoterpenos/metabolismo , Folhas de Planta/efeitos dos fármacos , Traqueófitas/efeitos dos fármacos , Traqueófitas/fisiologia
3.
J Fungi (Basel) ; 10(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39057355

RESUMO

The phyllosphere is an important but underestimated habitat for a variety of microorganisms, with limited knowledge about leaf endophytes as a crucial component of the phyllosphere microbiome. In this study, we investigated the mechanisms of communities and co-occurrence networks of leaf endophytes in response to forest thinning in a temperate forest. As we expected, contrasting responses of fungal and bacterial endophytes were observed. Specifically, the diversity of leaf endophytic fungi and the complexity of their co-occurrence networks increased significantly with thinning intensity, whereas the complexity of endophytic bacterial co-occurrence networks decreased. In particular, microbiota inhabiting damaged leaves seem to be more intensively interacting, showing an evident fungi-bacteria trade-off under forest thinning. In damaged leaves, besides the direct effects of thinning, thinning-induced changes in neighbor tree diversity indirectly altered the diversity of leaf fungal and bacterial endophytes via modifying leaf functional traits such as leaf dry matter content and specific leaf area. These findings provide new experimental evidence for the trade-offs between leaf endophytic fungi and bacteria under the different magnitudes of deforestation, highlighting their dependence on the presence or absence of leaf damage.

4.
Microbiome ; 11(1): 261, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996939

RESUMO

BACKGROUND: Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub richness (0, 2, 4, 8 species) were modified. RESULTS: Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree species richness. The increase in tree species richness greatly reduced the variability in bacterial community composition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios. CONCLUSIONS: Our findings provide insight into the importance of bacterial and archaeal communities in driving the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better understanding of prokaryotic communities in forest soils. Video Abstract.


Assuntos
Ecossistema , Árvores , Archaea/genética , Solo , Biodiversidade , Bactérias/genética , Plantas
5.
Front Plant Sci ; 14: 1101932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778709

RESUMO

Introduction: Fitness of plants is affected by their symbiotic interactions with arbuscular mycorrhizal fungi (AMF), and such effects are highly dependent on the environmental context. Methods: In the current study, we inoculated the nursery shrub species Artemisia ordosica with AMF species Funneliformis mosseae under contrasting levels of soil water and nutrients (diammonium phosphate fertilization), to assess their effects on plant growth, physiology and natural infestation by herbivores. Results: Overall, plant biomass was synergistically enhanced by increasing soil water and soil nutrient levels. However, plant height was surprisingly repressed by AMF inoculation, but only under low water conditions. Similarly, plant biomass was also reduced by AMF but only under low water and nutrient conditions. Furthermore, AMF significantly reduced leaf phosphorus levels, that were strongly enhanced under high nutrient conditions, but had only minor effects on leaf chlorophyll and proline levels. Under low water and nutrient conditions, specific root length was enhanced, but average root diameter was decreased by AMF inoculation. The negative effects of AMF on plant growth at low water and nutrient levels may indicate that under these conditions AMF inoculation does not strongly contribute to nutrient and water acquisition. On the contrary, the AMF might have suppressed the direct pathway of water and nutrient absorption by the plant roots themselves despite low levels of mycorrhizal colonization. AMF inoculation reduced the abundance of the foliar herbivore Chrysolina aeruginosa on plants that had been grown on the low nutrient soil, but not on high nutrient soil. Fertilization enhanced the abundance of this herbivore but only in plants that had received the high water treatment. The lower abundance of the herbivore on AMF plants could be related to their decreased leaf P content. In conclusion, our results indicate that AMF negatively affect the growth of Artemisia ordosica but makes them less attractive to a dominant herbivore. Discussion: Our study highlights that plant responses to AMF depend not only on the environmental context, but that the direction of the responses can differ for different components of plant performance (growth vs. defense).

6.
Environ Microbiol ; 25(5): 990-1006, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36582119

RESUMO

Elevated ozone (O3 ) can affect the susceptivity of plants to rust pathogens. However, the collective role of microbiomes involved in such interaction remains largely elusive. We exposed two cultivated poplar clones exhibiting differential O3 sensitivities, to non-filtered ambient air (NF), NF + 40 ppb or NF + 60 ppb O3 -enriched air in field open-top chambers and then inoculated Melampsora larici-populina urediniospores to study their response to rust infection and to investigate how microbiomes inhabiting four compartments (phyllosphere, rhizosphere, root endosphere, bulk soil) are involved in this response. We found that hosts with higher O3 sensitivity had significantly lower rust severity than hosts with lower sensitivity. Furthermore, the effect of increased O3 on the diversity and composition of microbial communities was highly dependent on poplar compartments, with the microbial network complexity patterns being completely opposite between the two clones. Notably, microbial source analysis estimated that phyllosphere fungal communities predominately derived from root endosphere and vice versa, suggesting a potential transmission mechanism between plant above- and below-ground systems. These promising results suggest that further investigations are needed to better understand the interactions of abiotic and biotic stresses on plant performance and the role of the microbiome in driving these changes.


Assuntos
Microbiota , Micobioma , Populus , Consórcios Microbianos , Rizosfera , Populus/microbiologia
7.
J Environ Sci (China) ; 112: 192-201, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955203

RESUMO

Heavy metal (Cu, Mn, Zn, Pb, and Cd) concentrations were measured in the leaves of Sabina chinensis and Platycladus orientalis collected from urban, suburban, and rural sites in Tianjin, China. Photosynthetic pigment contents, reactive oxygen species content, malondialdehyde (MDA) content and antioxidant enzyme activity were investigated, providing physiological response parameters. Our comparison of the sites revealed that urbanization significantly influenced the heavy metal concentrations in both plant leaves. At the rural site, both plant leaves exhibited the lowest heavy metal accumulation. The highest Cu, Mn, and Zn concentrations were found in S. chinensis leaves from the urban site; the highest Pb and Cd concentrations were found in P. orientalis leaves from the urban site. These results indicate that the urban site contained larger heavy metal concentrations in the plant leaves that may reflect the anthropogenic emission gradient. It is also found that S. chinensis may be used to monitor airborne heavy metal pollution because it is highly quick response to heavy metals, while P. orientalis may be used for mitigation due to its high resistance. The results of this study can contribute to the development of monitoring and environmental management plans by providing information on sensitive and resistant tree species for city greening in North China.


Assuntos
Cupressaceae , Juniperus , Metais Pesados , Poluentes do Solo , China , Cidades , Cupressaceae/efeitos dos fármacos , Cupressaceae/fisiologia , Monitoramento Ambiental , Poluição Ambiental/análise , Juniperus/efeitos dos fármacos , Juniperus/fisiologia , Metais Pesados/metabolismo , Folhas de Planta/química , Poluentes do Solo/metabolismo , Árvores/efeitos dos fármacos , Árvores/fisiologia
8.
Environ Pollut ; 291: 118141, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517180

RESUMO

Tropospheric ozone (O3) affects isoprenoid emissions, and floral emissions in particular, which may result in potential impacts on the interactions of plants with other organisms. The effects of ozone (O3) on isoprenoid emissions have been investigated for many years, while knowledge on O3 effects on floral emissions is still scarce and the relevant mechanism has not been clarified so far. We investigated the effects of O3 on floral and foliar isoprenoid emissions (mainly isoprene, monoterpenes and sesquiterpenes) and their synthase substrates from three rose varieties (CH, Rosa chinensis Jacq. var. chinensis; SA, R. hybrida 'Saiun'; MO, R. hybrida 'Monica Bellucci') at different exposure durations. Results indicated that the O3-induced stimulation after short-term exposure (35 days after the beginning of O3 exposure) was significant only for sesquiterpene emissions from flowers, while long-term O3 exposure (90 days after the beginning of O3 exposure) significantly decreased both foliar and floral monoterpene and sesquiterpene emissions. In addition, the observed decline of emissions under long-term O3 exposure resulted from the limitation of synthase substrates, and the responses of emissions and substrates varied among varieties, with the greatest variation in the O3-sensitive variety. These findings provide important insights on plant isoprenoid emissions and species selection for landscaping, especially in areas with high O3 concentration.


Assuntos
Poluentes Atmosféricos , Ozônio , Rosa , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Flores/química , Ozônio/análise , Folhas de Planta/química , Terpenos , Compostos Orgânicos Voláteis/análise
9.
Front Plant Sci ; 12: 647372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833771

RESUMO

Increasing demands to reduce fertilizer and pesticide input in agriculture has triggered interest in arbuscular mycorrhizal fungi (AMF) that can enhance plant growth and confer mycorrhiza-induced resistance (MIR). MIR can be based on a variety of mechanisms, including induction of defense compounds, and sensitization of the plant's immune system (priming) for enhanced defense against later arriving pests or pathogens signaled through jasmonic acid (JA). However, growth and resistance benefits of AMF highly depend on environmental conditions. Low soil P and non-limiting light conditions are expected to enhance MIR, as these conditions favor AMF colonization and because of observed positive cross-talk between the plant's phosphate starvation response (PSR) and JA-dependent immunity. We therefore tested growth and resistance benefits of the AMF Funneliformis mosseae in Plantago lanceolata plants grown under different levels of soil P and light intensity. Resistance benefits were assessed in bioassays with the leaf chewing herbivore Mamestra brassicae. Half of the plants were induced by jasmonic acid prior to the bioassays to specifically test whether AMF primed plants for JA-signaled defense under different abiotic conditions. AMF reduced biomass production but contrary to prediction, this reduction was not strongest under conditions considered least optimal for carbon-for-nutrient trade (low light, high soil P). JA application induced resistance to M. brassicae, but its extent was independent of soil P and light conditions. Strikingly, in younger plants, JA-induced resistance was annulled by AMF under high resource conditions (high soil P, ample light), indicating that AMF did not prime but repressed JA-induced defense responses. In older plants, low soil P and light enhanced susceptibility to M. brassicae due to enhanced leaf nitrogen levels and reduced leaf levels of the defense metabolite catalpol. By contrast, in younger plants, low soil P enhanced resistance. Our results highlight that defense priming by AMF is not ubiquitous and calls for studies revealing the causes of the increasingly observed repression of JA-mediated defense by AMF. Our study further shows that in our system abiotic factors are significant modulators of defense responses, but more strongly so by directly modulating leaf quality than by modulating the effects of beneficial microbes on resistance.

10.
Environ Microbiol ; 23(5): 2499-2508, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33728751

RESUMO

Inland river basins include critical habitats and provide various ecosystem services in extremely arid lands. However, we know little about the distribution patterns of soil fungal communities in these river basins. We investigated the distribution patterns of soil fungal communities from the riparian oasis zone (ROZ) to the circumjacent desert zone (CDZ) at the lower reaches of the Heihe River. The results indicated that soil fungal communities were mainly dominated by the phyla Ascomycota and Basidiomycota across all samples. The dominant soil fungi taxa were significantly different between ROZ and CDZ habitats at both the phylum and genus levels. Fungal alpha diversity was mainly affected by spatial factors and plant functional traits, and Pearson correlation analysis revealed that fungal alpha diversity was more closely related to plant functional traits than soil properties. Furthermore, fungal community structure was best explained by spatial factors and plant attributes (including plant diversity and plant functional traits). Together, our findings provide new insights into the significance of spatial factors and plant attributes for predicting distributions of fungal communities in arid inland river basins, which will help us better understand the functions and services of these ecosystems.


Assuntos
Micobioma , Solo , China , Ecossistema , Plantas , Rios , Microbiologia do Solo
11.
Environ Res ; 191: 110228, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950517

RESUMO

Membrane fouling has become the one of main obstacles for the widespread application of membrane technology in water treatment processes. Coagulation as pretreatment is proven to be effective for the alleviation of membrane fouling. In this study, the influence of humic acid (HA)/sodium alginate (SA) fractions in the structure and resistance of cake layer on the membrane surface was investigated. The presence of SA at an appropriate fraction could facilitate the formation of large and loosely branched flocs and thereby form a more permeable cake layer on the membrane surface due to good bridging and charge neutralization abilities of SA molecules. The particle image velocimetry (PIV) technique was employed for monitoring the dynamic formation process of cake layer under different HA/SA fractions. The cake layer with a higher thickness was observed to be rapidly formed on the membrane surface at the presence of SA in water. According to the theoretical analysis, the membrane fouling in coagulation-ultrafiltration (UF) combined system demonstrated to be highly dependent on the size and intra-porosity of flocs. The fractal dimension of flocs might have an impact on the resistance of cake layer through affecting the porosity of aggregated flocs. The SA molecules could be used as the coagulant aid for effective alleviation of membrane fouling and the improvement of filtration performance in a coagulation-UF combined system.


Assuntos
Ultrafiltração , Purificação da Água , Alginatos , Substâncias Húmicas/análise , Membranas Artificiais
12.
Environ Pollut ; 266(Pt 2): 115158, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650199

RESUMO

The impacts of ozone (O3) on crops have been extensively studied and are well understood. However, little information is available on the response of crops (especially maize) to the interactive effects of O3 and nitrogen (N) fertilizer. To this end, a maize cultivar (Zheng dan 958, ZD958) that is common in China was exposed to two O3 treatments and four N levels. We found that (1) the interactions between O3 and N were non-significant for grain yield, plant biomass, C and N, although N addition significantly increased all parameters except C concentrations in grain and plant; (2) compared to NF (non-filtered ambient air O3 concentration), NF60 (NF plus an extra 60 ppb O3) increased the optimum N application rates (Nopt) in grain yield and plant biomass, but not grain yield and plant biomass potentials, thus resulting in lower N use efficiencies (NUE) and a larger risk of N-related environmental pollution (e.g., increased N2O emission) under Nopt in NF60; (3) because of higher optimum plant N uptake (PNopt) in NF60, relative to NF, plant N-saturated conditions for grain yield potential can be gradually turned into N-limited conditions as O3 pollution increases. These findings manifest that O3 is a vital global change factor impacting the management of N fertilization. If current O3 pollution is substantially reduced, maize yield and biomass potentials can be increased under reductions in N input and N-related environmental pollution. In addition, these results can also contribute in developing and verifying Nopt model considering O3 pollution in the future.


Assuntos
Ozônio/análise , Zea mays , China , Poluição Ambiental , Nitrogênio , Folhas de Planta/química
13.
Sci Total Environ ; 726: 138594, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32320884

RESUMO

Urbanization accelerates pollution and habitat fragmentation, and the mechanism that shapes the arbuscular mycorrhizal (AM) fungal community in urban ecosystem still remains poorly understood. In this study, soil samples from 23 sites (from rural to urban), belonging to 4 green space types (country park, Co; urban park, Pa; roadside green space1, RoP1; and roadside green space2, RoP2), were collected to assess the effects of the urbanization on the AM fungal diversity. Using 454 pyrosequencing, a total of 79 AM fungal OTUs were uncovered. We found that urbanization showed a neutral effect on Shannon diversity, Simpson diversity, Pielou diversity, and community composition of the AM fungi. Within urban areas, the composition of AM fungal community was significantly different between RoP1 and RoP2. The db-RDA analysis of RoP1 and RoP2 revealed that the soil Cd accounted for the largest community composition variation, with an explanation rate of 20.5%, followed by the SOC (15.1%). Across 23 sites, Cd may have an obvious ecological toxicity on AM fungi, with significantly negative correlations between the soil Cd content and the AM fungal species richness and evenness. The AM fungal community also indicated significantly Mantel correlation with the soil Cd contents. Additionally, high herbaceous richness promoted rich AM fungi. The herbaceous composition, not the richness, has a significant impact on the AM fungal community composition. This study suggests that the toxicity of Cd from traffic should receive more attention during urban green space construction and management, and reasonable plant configuration contributed to the maintenance of the AM fungal community.


Assuntos
Metais Pesados , Micorrizas , Cádmio , Ecossistema , Nutrientes , Plantas , Solo , Microbiologia do Solo , Urbanização
14.
Front Microbiol ; 10: 2655, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849853

RESUMO

Water sources from the lower reaches of the Heihe River northwest China, located in an arid area impacted by environmental stresses, have promoted changes to the local soil and plant conditions; however, our understanding of variations and drivers of soil bacterial communities in an arid inland river basin remains unclear. Therefore, we collected 39 soil samples from a riparian oasis zone (ROZ) to the circumjacent desert zone (CDZ) at the lower reaches of Heihe River to evaluate bacterial communities based on the 16S rRNA gene data. We found that the bacterial community composition differed between ROZ and CDZ habitats, with significantly higher relative abundance of the phyla Gemmatimonadetes and Acidobacteria in ROZ, whereas the abundance of the phyla Actinobacteria and Deinococcus-Thermus was greater in CDZ. The difference in the bacterial community was almost entirely generated by the species turnover rather than the nestedness among all samples. In addition, we found that bacterial α-diversity index showed no significant difference between ROZ and CDZ habitats. The distance-decay analysis showed that spatial distance, plant community, soil property, and plant functional trait were correlated with bacterial community variations. However, the variation partition analysis (VPA) revealed that both soil properties and plant community strongly explained the difference [such as soil water content (WC), soil silt content, and plant community structure] compared with plant functional traits in bacterial ß-diversity and species turnover. Based on a co-occurrence network analysis, we found that the bacterial network of ROZ, which had more negative correlations, higher average connectivity, shorter average path length, and smaller modularity, was more complex than the network of CDZ. This suggested that the bacterial community was more stable and less vulnerable to change in the ROZ habitat than in the CDZ habitat. Overall, our findings suggest that the heterogeneity of soil properties and plant community collectively affect the structure of the soil bacterial community in an arid inland river basin. However, the influence of plant functional traits on the variation of the bacterial community depends on soil properties and plant community.

15.
Sci Total Environ ; 618: 905-915, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055594

RESUMO

With the rapid industrial development and modern agricultural practices, increasing nitrogen (N) deposition can cause nutrient imbalance in immature volcanic ash soil commonly found in Japan. Larch species, widely distributed in northeast Eurasia, are associated with ectomycorrhizal (ECM) fungi which play a critical role in nutrient acquisition for their hosts. In this study, we investigated species richness and diversity of ECM fungi associated with a hybrid larch (F1) and its parents, Dahurian larch (Larix gmelinii var. japonica) and Japanese larch (L. kaempferi), under simulated N deposition (0 and 100kgha-1yr-1) with/without phosphorous (P) (0 and 50kgha-1yr-1). Seedlings planted in immature volcanic ash with low nutrient availability were subjected to the N and P treatments for fifteen months. We found that response of ECM community structure to the increased nutrient availability depended on host genotypes. Nutrient addition significantly affected ECM structure in Japanese larch, but no such significant effect was found for Dahurian larch. Effects of the nutrient addition to ECM fungal community in F1 were intermediate. F1 was tolerant to high N loading, which was due to consistent, relatively high association with Suillus sp. and Hebeloma sp. F1 showed heterosis in relative biomass, which was most apparent under high N treatments. This co-variation of ECM fungal community structure and F1 biomass in response to N loading suggest that ECM community structure might play an important role in host growth. The present findings indicate effects of N deposition on ECM fungal community structure can depend on larch species, thus it is challenging to predict general trends.


Assuntos
Larix/microbiologia , Micorrizas/fisiologia , Nitrogênio/análise , Microbiologia do Solo , Erupções Vulcânicas , Florestas , Japão , Solo
16.
Sci China Life Sci ; 61(3): 340-347, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29086153

RESUMO

The patchy distribution of vegetation in dry land results in well-documented "fertile islands". However, the response of shrub fertile islands to plant recovery and the underlying mechanisms, such as the linkage plant and soil properties, remain unknown. We sampled soils from areas with three different plant coverages (25%, 45%, and 75%) and three of their adjacent inter-plants to investigate soil physicochemical and microbial properties in the upper Minjiang River arid valley. The results showed that these factors were influenced by the persistence of plants that contrasted with the inter-plant interspaces. We found fertile islands in under-plant soil that were enhanced with increasing plant coverage, from 25% to 45% and 75%; however, there were no significant differences between 45% and 75% plant coverage apart from the soil clay content and the fungi to bacteria ratio. The soil microbial communities in under-plant soil were strongly influenced by the total soil carbon (TC), soil organic carbon (SOC), and available nitrogen (AN), whereas the microbial communities in inter-plant soil were primarily constrained by the AN and available phosphorous (AP). Moreover, the inter-plant soil properties, including gravimetric soil water content, pH, electrical conductivity (EC), and soil C:N ratio, were also strongly influenced by adjacent vegetation, which suggested that fertile islands may be beneficial for plant recovery in this region.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Microbiologia do Solo , Solo/química , Carbono/análise , China , Clima Desértico , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise , Rios , Água
17.
Mar Pollut Bull ; 117(1-2): 429-435, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28209362

RESUMO

Effective conservation of mangroves requires a complete understanding of vegetation structure and identification of the variables most important to their assembly. Using canonical correspondence analysis (CCA) combined with variation partition, we determined the independent and joint effects of sediment variables, including physicochemical characteristics and heavy metals, on mangrove community assemblies in the overstory and understory in Leizhou Peninsula, China. The results indicated that the contributions of sediment physicochemical variables to community assembly were greater than were those of heavy metals, particularly in overstory vegetation. However, the independent contributions of heavy metals were higher in understory mangrove vegetation than in the overstory. The TOC, TP, and salinity of the sediment, distance from the coastline, and concentration of As were limiting factors for mangrove assembly in overstory vegetation, while understory vegetation may be affected to a greater degree by the distance from the coastline, electrical conductivity, and concentration of As and Pb in the sediment.


Assuntos
Sedimentos Geológicos/química , Áreas Alagadas , Avicennia , China , Metais Pesados/análise , Salinidade
18.
J Environ Sci (China) ; 46: 147-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27521946

RESUMO

Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load, composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root-shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root-shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces.


Assuntos
Poeira/análise , Monitoramento Ambiental , Plântula/fisiologia , Pequim , Carbono , Clorofila/metabolismo , Clorofila A , Nitrogênio , Material Particulado , Fotossíntese , Folhas de Planta , Caules de Planta , Plântula/crescimento & desenvolvimento , Sophora/crescimento & desenvolvimento , Sophora/fisiologia
19.
Mar Pollut Bull ; 100(1): 224-230, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26365500

RESUMO

Sediments in eight types of mangroves were sampled in the Leizhou Peninsula. Heavy metals were analyzed to investigate the effects on metal distribution of mangrove communities, to evaluate contamination levels, identify sources and relationships between the two. Results showed that mangrove communities have effects on most heavy metal distributions in sediments, especially in the sediment with shrub communities of Aegiceras corniculatum where the contents of many metals are highest. As, Cr and Ni were identified as metal pollutants of primary concern, while Cd was of no concern. Zn, Pb, As mainly originated from anthropogenic source while the other metals are geogenic. Heavy metal distributions were affected by the independent and joint effects of landscape and sediment context; landscape context explains more variations in heavy metals than does sediment physicochemical variables. Total sulfur, total phosphorus and total potassium in sediment, and the existence of paddy field and forest land within 2000m around the sampling sites are significant variables also.


Assuntos
Sedimentos Geológicos/análise , Metais Pesados/análise , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Áreas Alagadas , China , Ecologia/métodos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Análise Multivariada , Fósforo/análise , Potássio/análise , Enxofre/análise
20.
Environ Pollut ; 197: 116-126, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25521414

RESUMO

We studied the colonization of ectomycorrhizal fungi and species abundance of a hybrid larch (F1) under elevated CO2 and O3. Two-year-old seedlings were planted in an Open-Top-Chamber system with treatments: Control (O3 < 6 nmol/mol), O3 (60 nmol/mol), CO2 (600 µmol/mol), and CO2 + O3. After two growing seasons, ectomycorrhiza (ECM) colonization and root biomass increased under elevated CO2. Additionally, O3 impaired ECM colonization and species richness, and reduced stem biomass. However, there was no clear inhibition of photosynthetic capacity by O3. Concentrations of Al, Fe, Mo, and P in needles were reduced by O3, while K and Mg in the roots increased. This might explain the distinct change in ECM colonization rate and diversity. No effects of combined fumigation were observed in any parameters except the P concentration in needles. The tolerance of F1 to O3 might potentially be related to a shift in ECM community structure.


Assuntos
Poluentes Atmosféricos/toxicidade , Dióxido de Carbono/toxicidade , Larix/crescimento & desenvolvimento , Ozônio/toxicidade , Biomassa , Fumigação , Fungos , Larix/efeitos dos fármacos , Micorrizas/fisiologia , Fotossíntese/fisiologia , Raízes de Plantas , Caules de Planta , Plantas , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA