Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133177, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064947

RESUMO

The concentration of airborne microplastics is largely unknown in the remote high mountain area of the Tibetan Plateau. Here we report airborne microplastic concentrations of 2.5-58.8 n/m3 in urban, rural and wildland areas across the Tibetan Plateau, with smaller (∼89% <100 µm) fragments (>80%) dominating. Polyethylene terephthalate, polyethylene, polyamide and polystyrene were the dominant polymers of airborne microplastics on the Tibetan Plateau. Distribution of airborne microplastics was positively correlated with anthropogenic activity indices, such as population density and nighttime light intensity. Although the contribution of long-range atmospheric transport is valid, dispersed villages also appear to be a source of airborne microplastics for wildland areas across the Tibetan Plateau.

2.
J Hazard Mater ; 457: 131711, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257387

RESUMO

Microplastics are an emerging and persistent pollutant due to their threat to global ecological systems and human health. Recent studies showed that microplastics have infiltrated the remote Third Pole - the Tibetan Plateau. Here, we summarize the current evidence for microplastic pollution in the different environments (rivers/lakes, sediment, soil, ice/snow and atmosphere) of the Tibetan Plateau. We assess the spatial distribution, source, fate, and potential ecological effects of microplastics in this broad plateau. The integrated results show that microplastics were pervasive in biotic and abiotic components of the Tibetan Plateau, even at the global highest-altitude, Mt. Everest. Although the concentration of microplastics in the Tibetan Plateau was far below that found in the densely populated lowlands, it showed a higher concentration than that in the ocean system. Tourist populations are identified as a substantial source of anthropogenic plastic input rather than local residents due to the rapid development of the tourism industry. In the sparsely inhabited remote area of the Tibetan Plateau, long-range atmospheric transport facilitates allochthonous microplastic diffusion. Robust solar radiation in the Tibetan Plateau might enhanced production of secondary microplastics by weathering (UV-photooxidation) of abandoned plastic waste. A rough estimation showed that the microplastic export flux from melting glaciers was higher than that measured in most of the world's largest rivers, which affects local and downstream areas. Since the Tibetan Plateau is vital for Asian water supply and numerous endangered wildlife, the potential human and ecological risk of microplastics to these fragile ecosystems needs to be fully evaluated within the context of climate-change impacts.

3.
Sci Total Environ ; 856(Pt 1): 159056, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36170919

RESUMO

Carbon, nitrogen, phosphorus and oxygen (CNPO) are essential biogenic elements, driving life activities in marine environments. However, the integrated research of fish and seaweed culture on the fluxes of CNPO is scarce. To bridge the research gap, the contribution of mariculture of fish and seaweeds to the fluxes of CNPO in two important mariculture provinces, Fujian and Guangdong, in China, was investigated for the first time. Data from published literature and this study were integrated to calculate the CNPO fluxes using relative formulas. CNP release and O2 loss caused by fish mariculture increased with year (2003-2020) and reached 185.55 ± 3.18 Gg C, 35.92 ± 0.51 Gg N, 7.27 ± 0.24 Gg P and 644.18 ± 11.05 Gg O2 for Fujian and 215.81 ± 2.51 Gg C, 41.77 ± 0.40 Gg N, 8.47 ± 0.19 Gg P and 749.23 ± 8.71 Gg O2 for Guangdong in 2020. The averaged P fluxes due to fish mariculture in Fujian and Guangdong during 2016-2020 are 2.2 folds of the Min River and 69 % of the Pearl River, respectively. CNP removal and O2 generation by seaweed culture in Fujian also increased with year (2003-2020) and reached 555.74 ± 16.45 Gg C, 58.44 ± 4.83 Gg N, 7.80 ± 1.41 Gg P and 1481.97 ± 43.86 Gg O2 in 2020. In contrast, seaweed culture in Guangdong resulted in maximal C (39.81 ± 1.43 Gg), N (4.33 ± 0.26 Gg) removal and O2 (106.15 ± 3.82 Gg) release in 2013 and maximal P (0.41 ± 0.03 Gg) removal in 2019. The averaged N and P fluxes due to seaweed culture in Fujian during 2016-2020 are 69 % and 2.4 folds of the Min River, respectively. The different mariculture structure leads to a net CNP sink in Fujian but a net CNP source in Guangdong. The net CNP source may lead to seawater acidification, eutrophication and deoxygenation in coastal areas. These findings supply solid data for adjusting mariculture structure to achieve CNPO neutrality within mariculture.


Assuntos
Alga Marinha , Animais , Monitoramento Ambiental/métodos , Aquicultura , Eutrofização , Peixes , Fósforo/análise , Nitrogênio/análise , China , Carbono
4.
Water Res ; 219: 118537, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526431

RESUMO

Global impoundment of river systems represents a major anthropogenic forcing to carbon cycling in reservoirs with seasonal thermal stratification. Currently, a quantitative and mechanistic understanding of how hypolimnetic deoxygenation in stratified reservoirs alters dissolved organic matter (DOM) cycling and lateral transport along the river continuum remains unresolved. Herein, we used optical and high-resolution mass spectrometric analyses to track seasonal and spatial compositional changes of DOM from a large, subtropical impounded river in southeast China. Aliphatic compounds were contributed by algal blooms to epilimnetic DOM during the spring/summer and by baseflow to the overall DOM pool during low-discharge periods. Deoxygenation-driven hypolimnetic mineralization enhanced in situ production of bio-refractory molecules and humic-like fluorescent DOM (FDOMH) by utilizing bio-labile DOM and settling biogenic particles during periods of stratification. Production efficiency of hypolimnetic FDOMH was 159-444% higher than that of the global dark ocean, and was strongly regulated by temperature and possibly substrate supply. The in situ production rate of hypolimnetic FDOMH was four to five orders-of-magnitude higher than the dark ocean, with much faster turnover rates in dark inland waters versus the dark ocean. Collectively, these findings indicate that the hypolimnion is a hotspot for microbial carbon transformations, and hence an important source and pool of refractory DOM in aquatic systems. The lateral FDOMH flux increased 10.8-32.1% due to hypolimnetic reservoir release during periods of stratification, highlighting the importance of incorporating hypolimnetic carbon transformations into models for carbon cycling of inland waters and the land-sea interface.


Assuntos
Matéria Orgânica Dissolvida , Carbono , Rios , Estações do Ano
5.
J Hazard Mater ; 381: 121230, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31563037

RESUMO

Quantitative assessment of metal sources in sediments is essential for implementation of source control and remediation strategies. This study investigated metal contamination in sediments to assess potential ecological risks and quantify pollutant sources of metals (Cu, Zn, Pb, Cd, Cr, Co and Ni) in the Wen-Rui Tang River watershed. Total and fraction analysis indicated high pollution levels of metals. Zinc and Cd posed high ecological risk based on the risk assessment code, with the highest ecological risk found in the southwestern of the watershed. The positive matrix factorization (PMF) model was highly effective in predicting total metal concentrations and identified three contributing metal sources. An agricultural source (factor 1) contributed highly to Cu (74.1%) and Zn (42.5%), and was most prominent in the west and south-central portions of the watershed. Cd (93.5%) showed a high weighting with industrial sources (factor 2) with a hot spot in the southwest. Factor 3 was identified as a mixed natural and vehicle traffic source that showed large contribution to Cr (65.2%), Ni (63.9%) and Pb (50.7%). Spatial analysis indicated a consistent pattern between PMF-identified factors and suspected metal sources at the watershed scale demonstrating the efficacy of the PMF modeling approach for watershed analysis.

6.
Sci Total Environ ; 653: 714-722, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759597

RESUMO

Assessing heavy metal pollution in river sediments and identifying the key factors contributing to metal pollution are critical components for devising river environmental protection and remediation strategies to protect human and ecological health. This is especially important in urban areas where metals from a wide range of sources contribute to sediment pollution. In this study, the metal enrichment factor (EF) was used to measure the watershed distribution of Cu, Zn, Pb and Cd in sediments in the Wen-Rui Tang urban river system in Wenzhou, Eastern China. The Geographical Detector Method (GDM) was specifically evaluated for its ability to analyze spatial relationships between metal EFs and their anthropogenic and natural control factors, including densities of industry (DI), livestock (DL), service industries (DS), population (DP), and roads (DR), along with agricultural area (AG), sediment total organic carbon (TOC), and soil types (ST). Results showed that the watershed was highly contaminated by all metals with an EF trend of Cd ≫ Zn > Cu > Pb. The spatial distribution of EFs demonstrated high contamination of all metals in the southwestern region of the watershed where industrial activities were concentrated, and higher Cu and Zn concentrations in the northeastern region having a high density of livestock production. GDM results identified DI as the dominant determinant for all metals, while TOC and ST were determined to have a moderate secondary influence for Zn, Pb and Cd. Additionally, GDM revealed several additive and nonlinear interactions between anthropogenic and natural factors influencing metal concentrations. Compared to other correlation, multiple linear regression and geographically weighted regression, GDM demonstrated distinct advantages of being able to assess both categorical and continuous variables and determine both single and multiple factor interactions. These attributes provide a more comprehensive understanding of metal spatial distributions while avoiding multicollinearity issues when identifying significant contributing factors at the watershed scale.

7.
Environ Pollut ; 245: 1022-1030, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30682736

RESUMO

Metal contamination in aquatic environments is a severe global concern to human health and aquatic ecosystems. This study used several risk assessment indices, to evaluate metal (Cu, Zn, Pb, Cd and Cr) environmental risk of riverine surface sediments across the rural-urban interface of the rapidly developing Wen-Rui Tang River watershed in eastern China. Risk assessments were determined for 38 sites based on the potential ecological risk index (RI), consensus-based sediment quality guidelines (SQGs) and risk assessment code (RAC). Land-use cluster analysis showed that sediments were severely contaminated, especially for Cd, whose concentrations were ∼100 times higher than background levels and had a high proportion in the bioaccessible fraction. According to RI, ErCd was identified with extremely high risk potential, resulting in the highest ecological risk of Cluster 4 (industrial). Similarly, risk within Cluster 4 (industrial) was also ranked highest by SQGs assessment due to the high proportion of industrial land use. Zinc was determined with high risk due to its high concentration compared to its effect range medium (ERM) value. Discrepancies in predicting environmental risks from metals among the three indices were mainly attributed to the contrasting definitions of these metrics. Environmental risk uncertainty derived from spatial variation was further estimated by Monte Carlo simulation and ranked as: Zn > Cd > Cr > Pb > Cu. This comprehensive environmental risk assessment provides important information to guide remediation strategies for management of metal contamination at the watershed scale.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Urbanização , Poluentes Químicos da Água/análise , China , Ecossistema , Humanos , Medição de Risco
8.
Chemosphere ; 207: 218-228, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29800822

RESUMO

Heavy metal pollution of aquatic environments in rapidly developing industrial regions is of considerable global concern due to its potential to cause serious harm to aquatic ecosystems and human health. This study assessed heavy metal contamination of sediments in a highly industrialized urban watershed of eastern China containing several historically unregulated manufacturing enterprises. Total concentrations and solid-phase fractionation of Cu, Zn, Pb, Cr and Cd were investigated for 39 river sediments using multivariate statistical analysis and geographically weighted regression (GWR) methods to quantitatively examine the relationship between land use and heavy metal pollution at the watershed scale. Results showed distinct spatial patterns of heavy metal contamination within the watershed, such as higher concentrations of Zn, Pb and Cd in the southwest and higher Cu concentration in the east, indicating links to specific pollution sources within the watershed. Correlation and PCA analyses revealed that Zn, Pb and Cd were dominantly contributed by anthropogenic activities; Cu originated from both industrial and agricultural sources; and Cr has been altered by recent pollution control strategies. The GWR model indicated that several heavy metal fractions were strongly correlated with industrial land proportion and this correlation varied with the level of industrialization as demonstrated by variations in local GWR R2 values. This study provides important information for assessing heavy metal contaminated areas, identifying heavy metal pollutant sources, and developing regional-scale remediation strategies.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Metais Pesados/química , Rios/química , Poluentes Químicos da Água/química , Humanos , Metais Pesados/análise , Poluentes Químicos da Água/análise
9.
Environ Pollut ; 237: 639-649, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29525630

RESUMO

Heavy metal pollution is a major concern in China because of its serious effects on human health. To assess potential human health and ecological risks of heavy metal pollution, concentration data for seven heavy metals (As, Pb, Cd, Cr, Hg, Cu, Zn) from 14 sites spanning the rural-urban interface of the Wen-Rui Tang River watershed in southeast China were collected from 2000 to 2010. The heavy metal pollution index (HPI), hazard index (HI) and carcinogenic risk (CR) metrics were used to assess potential heavy metal risks. Further, we evaluated the uncertainty associated with the risk assessment indices using Monte Carlo analysis. Results indicated that all HPI values were lower than the critical level of 100 suggesting that heavy metal levels posed acceptable ecological risks; however, one site having an industrial point-source input reached levels of 80-97 on several occasions. Heavy metal concentrations fluctuated over time, and the decrease after 2007 is due to increased wastewater collection. The HI suggested low non-carcinogenic risk throughout the study period (HI < 1); however, nine sites showed CR values above the acceptable level of 10-4 for potential cancer risk from arsenic in the early 2000s. Uncertainty analysis revealed an exposure risk for As at all sites because some CR values exceeded the 10-4 level of concern; levels of Cd near an old industrial area also exceeded the Cd exposure standard (2.6% of CR values > 10-4). While most metrics for human health risk did not exceed critical values for heavy metals, there is still a potential human health risk from chronic exposure to low heavy metal concentrations due to long-term exposure and potential metal interactions. Results of this study inform water pollution remediation and management efforts designed to protect public health in polluted urban area waterways common in rapidly developing regions.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes Químicos da Água/análise , Arsênio/análise , China , Ecologia , Poluição Ambiental/análise , Humanos , Mercúrio/análise , Medição de Risco , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA