Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Talanta ; 275: 126069, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692042

RESUMO

Lipid deposition has been considered one of the key factors in the occurrence of valvular heart disease (VHD) and a great potential target for the diagnosis of VHD. However, the development of lipid imaging technologies and efficient lipid specific probes is in urgent demand. In this work, we have prepared a lipid droplets (LDs) targeted fluorescence probe CPTM based on a push-pull electronic structure for the imaging of diseased aortic valves. CPTM showed obvious twisted intramolecular charge transfer (TICT) effect and its emission changed from 600 nm in water to 508 nm in oil. CPTM not only exhibited good biocompatibility and high photostability, but also impressive LDs specific imaging performance in human primary valvular interstitial cells and human diseased aortic valves. Moreover, the dynamic changes of intracellular LDs could be monitor in real-time after staining with CPTM. These results were expected to offer new ideals for the designing of novel LDs specific probes for further bioimaging applications.


Assuntos
Valva Aórtica , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Imagem Óptica , Gotículas Lipídicas/química , Cor , Valvopatia Aórtica/diagnóstico por imagem , Lipídeos/química , Lipídeos/análise
2.
JCI Insight ; 9(4)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38290007

RESUMO

A robust, sterile inflammation underlies myocardial ischemia and reperfusion injury (MIRI). Several subsets of B cells possess the immunoregulatory capacity that limits tissue damage, yet the role of B cells in MIRI remains elusive. Here, we sought to elucidate the contribution of B cells to MIRI by transient ligation of the left anterior descending coronary artery in B cell-depleted or -deficient mice. Following ischemia and reperfusion (I/R), regulatory B cells are rapidly recruited to the heart. B cell-depleted or -deficient mice exhibited exacerbated tissue damage, adverse cardiac remodeling, and an augmented inflammatory response after I/R. Rescue and chimeric experiments indicated that the cardioprotective effect of B cells was not solely dependent on IL-10. Coculture experiments demonstrated that B cells induced neutrophil apoptosis through contact-dependent interactions, subsequently promoting reparative macrophage polarization by facilitating the phagocytosis of neutrophils by macrophages. The in vivo cardioprotective effect of B cells was undetectable in the absence of neutrophils after I/R. Mechanistically, ligand-receptor imputation identified FCER2A as a potential mediator of interactions between B cells and neutrophils. Blocking FCER2A on B cells resulted in a reduction in the percentage of apoptotic neutrophils, contributing to the deterioration of cardiac remodeling. Our findings unveil a potential cardioprotective role of B cells in MIRI through mechanisms involving FCER2A, neutrophils, and macrophages.


Assuntos
Subpopulações de Linfócitos B , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Neutrófilos/fisiologia , Remodelação Ventricular , Isquemia , Apoptose
3.
Discov Oncol ; 14(1): 231, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093163

RESUMO

Machine learning techniques have been widely used in predicting disease prognosis, including cancer prognosis. One of the major challenges in cancer prognosis is to accurately classify cancer types and stages to optimize early screening and detection, and machine learning techniques have proven to be very useful in this regard. In this study, we aimed at identifying critical genes for diagnosis and outcomes of hepatocellular carcinoma (HCC) patients using machine learning. The HCC expression dataset was downloaded from GSE65372 datasets and TCGA datasets. Differentially expressed genes (DEGs) were identified between 39 HCC and 15 normal samples. For the purpose of locating potential biomarkers, the LASSO and the SVM-RFE assays were performed. The ssGSEA method was used to analyze the TCGA to determine whether there was an association between SPINK1 and tumor immune infiltrates. RT-PCR was applied to examine the expression of SPINK1 in HCC specimens and cells. A series of functional assays were applied to examine the function of SPINK1 knockdown on the proliferation of HCC cells. In this study, 103 DEGs were obtained. Based on LASSO and SVM-RFE analysis, we identified nine critical diagnostic genes, including C10orf113, SPINK1, CNTLN, NRG3, HIST1H2AI, GPRIN3, SCTR, C2orf40 and PITX1. Importantly, we confirmed SPINK1 as a prognostic gene in HCC. Multivariate analysis confirmed that SPINK1 was an independent prognostic factor for overall survivals of HCC patients. We also found that SPINK1 level was positively associated with Macrophages, B cells, TFH, T cells, Th2 cells, iDC, NK CD56bright cells, Th1 cells, aDC, while negatively associated with Tcm and Eosinophils. Finally, we demonstrated that SPINK1 expression was distinctly increased in HCC specimens and cells. Functionally, silence of SPINK1 distinctly suppressed the proliferation of HCC cells via regulating Wnt/ß-catenin pathway. The evidence provided suggested that SPINK1 may possess oncogenic properties by inducing dysregulated immune infiltration in HCC. Additionally, SPINK1 was identified as a novel biomarker and therapeutic target for HCC.

4.
Oxid Med Cell Longev ; 2022: 2849985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204518

RESUMO

The pathological mechanisms underlying cardiac remodelling and cardiac dysfunction caused by pressure overload are poorly understood. Mitochondrial damage and functional dysfunction, including mitochondrial bioenergetic disorder, oxidative stress, and mtDNA damage, contribute to heart injury caused by pressure overload. Mitophagy, an important regulator of mitochondrial homeostasis and function, is triggered by mitochondrial damage and participates in the pathological process of cardiovascular diseases. Recent studies indicate that mitophagy plays a critical role in the pressure overload model, but evidence on the causal relationship between mitophagy abnormality and pressure overload-induced heart injury is inconclusive. This review summarises the mechanism, role, and regulation of mitophagy in the pressure overload model. It also pays special attention to active compounds that may regulate mitophagy in pressure overload, which provide clues for possible clinical applications.


Assuntos
Traumatismos Cardíacos , Doenças Mitocondriais , DNA Mitocondrial/genética , Humanos , Doenças Mitocondriais/genética , Mitofagia , Remodelação Ventricular
5.
Environ Syst Decis ; 41(4): 594-615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306961

RESUMO

The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the grid is subject to changes and stresses due to diverse factors including solar weather, climate, hydrology, and ecology. The emerging interconnected and complex network dependencies make such interactions increasingly dynamic, posing novel risks, and presenting new challenges to manage the coupled human-natural system. This paper provides a survey of models and methods that seek to explore the significant interconnected impact of the electric power grid and interdependent domains. We also provide relevant critical risk indicators (CRIs) across diverse domains that may be used to assess risks to electric grid reliability, including climate, ecology, hydrology, finance, space weather, and agriculture. We discuss the convergence of indicators from individual domains to explore possible systemic risk, i.e., holistic risk arising from cross-domain interconnections. Further, we propose a compositional approach to risk assessment that incorporates diverse domain expertise and information, data science, and computer science to identify domain-specific CRIs and their union in systemic risk indicators. Our study provides an important first step towards data-driven analysis and predictive modeling of risks in interconnected human-natural systems.

6.
J Cell Mol Med ; 25(7): 3182-3193, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33611830

RESUMO

MARCH5 is a critical regulator of mitochondrial dynamics, apoptosis and mitophagy. However, its role in cardiovascular system remains poorly understood. This study aimed to investigate the role of MARCH5 in endothelial cell (ECs) injury and the involvement of the Akt/eNOS signalling pathway in this process. Rat models of myocardial infarction (MI) and human cardiac microvascular endothelial cells (HCMECs) exposed to hypoxia (1% O2 ) were used in this study. MARCH5 expression was significantly reduced in ECs of MI hearts and ECs exposed to hypoxia. Hypoxia inhibited the proliferation, migration and tube formation of ECs, and these effects were aggravated by knockdown of MARCH5 but antagonized by overexpressed MARCH5. Overexpression of MARCH5 increased nitric oxide (NO) content, p-eNOS and p-Akt, while MARCH5 knockdown exerted the opposite effects. The protective effects mediated by MARCH5 overexpression on ECs could be inhibited by eNOS inhibitor L-NAME and Akt inhibitor LY294002. In conclusion, these results indicated that MARCH5 acts as a protective factor in ischaemia/hypoxia-induced ECs injury partially through Akt/eNOS pathway.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Cromonas/farmacologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Morfolinas/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/genética
7.
J Interv Cardiol ; 2021: 7230063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35024007

RESUMO

INTRODUCTION: The aim of this systematic review and meta-analysis was to investigate the efficacy and safety of emergent transcatheter aortic valve implantation (TAVI) in patients with decompensated aortic stenosis (AS) by comparing the clinical outcomes with the patients who had received the elective TAVI. METHODS: By searching PubMed, EMBASE, and Cochrane databases, we obtained the studies comparing the clinical outcomes of emergent TAVI and elective TAVI. Finally, 14 studies were included. RESULTS: A total of 14 eligible articles with 73,484 patients were included in this meta-analysis. Emergent TAVI was associated with a higher mortality during hospitalization (HR 2.09, 95% CI [1.39 to 3.14]), 30 days (HR 2.29, 95% CI [1.69 to 3.10]), and 1 year (HR 1.96, 95% CI [1.55 to 2.49]). Consistently, the incidence of acute kidney injury (AKI) (RR 2.48, 95% CI [1.85 to 3.32]), dialysis (RR 2.37, 95% CI [1.95 to 2.88]), bleeding (RR 1.62, 95% CI [1.27 to 2.08]), major bleeding (RR 1.05, 95% CI [1.00 to 1.10]), and 30-day rehospitalization (RR 1.30, 95% CI [1.07, 1.58]) were more common in patients receiving emergent TAVI. No statistical differences were found in the occurrence rate of vascular complications (RR 1.11, 95% CI [0.90, 1.36]), major vascular complications (RR 1.14, 95% CI [0.52, 2.52]), permanent pacemaker (PPM) placement (RR 1.05, 95% CI [0.99, 1.11]), cerebrovascular events (RR 1.11, 95% CI [0.98, 1.25]), moderate to severe paravalvular leakage (PVL) (RR 1.23, 95% [CI 0.94 to 1.61]), and device success (RR 0.99, 95% CI [0.97, 1.01]). CONCLUSION: Emergent TAVI is associated with some postoperative complications and increased mortality compared with elective TAVI. Emergent TAVI should be implemented cautiously and individually.


Assuntos
Injúria Renal Aguda , Estenose da Valva Aórtica , Substituição da Valva Aórtica Transcateter , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Humanos , Incidência , Complicações Pós-Operatórias/epidemiologia , Fatores de Risco , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento
8.
ACS Nano ; 14(5): 5998-6006, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32383860

RESUMO

The visual aesthetic that involves color, brightness, and glossiness is of great importance for building integrated photovoltaics. Semitransparent organic solar cells (ST-OSCs) are thus considered as the most promising candidate due to their superiority in transparency and efficiency. However, the realization of high color purity with narrow bandpass transmitted light usually causes the severely suppressed transparency in ST-OSCs. Herein, we present a spectrally selective electrode (SSE) by imitating the integrating strategy of beetle cuticle for achieving narrow bandpass ST-OSCs with high efficiency and long-term stability. The proposed SSE allows for efficient light-selective passage, leading to tunable narrow bandpass transmitted light from violet to red. An optimized power conversion efficiency of 15.07% is achieved for colorful ST-OSCs, which exhibit color purity close to 100% and a peak transmittance approaching 30%. Long-term stability is also improved for ST-OSCs made with this SSE due to the light-rejecting and the moisture-blocking abilities. The realization of bright and colorful ST-OSCs also indicates the application potential of SSEs in light-emitting diodes, lasers, and photodetectors.

9.
ACS Appl Mater Interfaces ; 11(14): 13491-13498, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30880387

RESUMO

The fast evolution of metal halide perovskite solar cells has opened a new chapter in the field of renewable energy. High-quality perovskite films as the active layers are essential for both high efficiency and long-term stability. Here, the perovskite films with enlarged crystal grain size and decreased defect density are fabricated by introducing the extremely low-cost and green polymer, ethyl cellulose (EC), into the perovskite layer. The addition of EC triggers hydrogen bonding interactions between EC and the perovskite, passivating the charge defect traps at the grain boundaries. The long chain of EC further acts as a scaffold for the perovskite structure, eliminating the annealing-induced lattice strain during the film fabrication process. The resulting devices with the EC additive exhibit a remarkably enhanced average power conversion efficiency from 17.11 to 19.27% and an improvement of all device parameters. The hysteresis index is found to decrease by three times from 0.081 to 0.027, which is attributed to suppressed ion migration and surface charge trapping. In addition, the defect passivation by EC significantly improves the environmental stability of the perovskite films, yielding devices that retain 80% of their initial efficiency after 30 days in ambient air at 45% relative humidity, whereas the pristine devices without EC fully degrade. This work provides a low-cost and green avenue for passivating defects that improves both the efficiency and operational stability of perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA