Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 34: 221-236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38235307

RESUMO

Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35639584

RESUMO

Airborne pathogens, such as the world-spreading severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause global epidemics via transmission through the respiratory pathway. It is of great urgency to develop adequate interventions that can protect individuals against future pandemics. This study presents a nasal spray that forms a polysaccharide "armor" on the cell surface through the layer-by-layer self-assembly (LBL) method to minimize the risk of virus infection. The nasal spray has two separate components: chitosan and alginate. Harnessing the electrostatic interaction, inhaling the two polysaccharides alternatively enables the assembly of a barrier that reduces virus uptake into the cells. The results showed that this approach has no obvious cellular injury and endows cells with the ability to resist the infection of adenovirus and SARS-CoV-2 pseudovirus. Such a method can be a potential preventive strategy for protecting the respiratory tract against multiple viruses, especially the upcoming SARS-CoV-2 variants.

3.
Nano Lett ; 22(9): 3825-3831, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499361

RESUMO

Conductive polymers (CPs) are promising biomaterials to address signal connection at biointerfaces for tissue regeneration. However, regulating material microstructure at the subcellular scale to provide a more seamless interface between conductive substrates and cells remains a great challenge. Here, we demonstrate that chemical factors and enzyme-carried subcellular structures at lesion site provide a natural bioreactor to self-assemble conductive microvesicles (CMVs) for improving bioelectrical signal reconstruction. The synthesized CMVs contribute to the electrical conduction of the injured nerve in the early stage. Moreover, CMVs are eventually expelled via lymphatic capillary to minimize space-occupying and chronic inflammation. Therefore, we provide a prototype to integrate specific physiological microenvironments and polymer chemistry to manufacture subcellular functional materials with self-adaptive interface in vivo for biomedical applications.


Assuntos
Polímeros , Engenharia Tecidual , Materiais Biocompatíveis/química , Condutividade Elétrica , Estresse Oxidativo
4.
J Biomater Sci Polym Ed ; 32(12): 1635-1653, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34004124

RESUMO

Silk fibroin (SF) from Bombyx mori is a natural polymer with exceptional biocompatibility, low immunogenicity, and ease of processability. SF-based hydrogels have been identified as one of the most attractive candidate scaffolds for tissue engineering and can be fabricated through various physical or chemical crosslinking approaches. However, conventional SF hydrogels may suffer from several major drawbacks, such as structural inhomogeneity, poor mechanical properties or utilization of cytotoxic reagents. Herein, a dually crosslinked SF-based composite hydrogel with enhanced strength and elasticity was fabricated by inducing the formation of uniform and small ß-sheet structures by sonication in a restricted enzymatic precrosslinked network. The composite hydrogel not only demonstrated concentration-dependent stiffness variation but also exhibited time-dependent changes in toughness behavior. Moreover, subsequent experimental results revealed that the hydrogels exhibit other advantages, including high water retention capacity and long-term stability under physiological conditions. Finally, a three-dimensional (3 D) construct of the cell-laden hydrogel was fabricated, confirming that the composite hydrogel could provide a biocompatible microenvironment with dynamically changing mechanical properties. The combination of physical and enzymatic crosslinking strategies contributes to a biocompatible composite hydrogel with unique mechanical properties that holds great potential for use in tissue engineering and regenerative medicine.


Assuntos
Bombyx , Fibroínas , Animais , Ácido Hialurônico , Hidrogéis , Seda , Engenharia Tecidual , Alicerces Teciduais
5.
J Mater Sci Mater Med ; 31(12): 128, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33247786

RESUMO

Due to their excellent mechanical strength and biocompatibility, silk fibroin(SF) hydrogels can serve as ideal scaffolds. However, their slow rate of natural degradation limits the space available for cell proliferation, which hinders their application. In this study, litchi-like calcium carbonate@hydroxyapatite (CaCO3@HA) porous microspheres loaded with proteases from Streptomyces griseus (XIV) were used as drug carriers to regulate the biodegradation rate of SF hydrogels. The results showed that litchi-like CaCO3@HA microspheres with different phase compositions could be prepared by changing the hydrothermal reaction time. The CaCO3@HA microspheres controlled the release of Ca ions, which was beneficial for the osteogenic differentiation of mesenchymal stem cells (MSCs). The adsorption and release of protease XIV from the CaCO3@HA microcarriers indicated that the loading and release amount can be controlled with the initial drug concentration. The weight loss test and SEM observation showed that the degradation of the fibroin hydrogel could be controlled by altering the amount of protease XIV-loaded CaCO3@HA microspheres. A three-dimensional (3D) cell encapsulation experiment proved that incorporation of the SF hydrogel with protease XIV-loaded microspheres promoted cell dispersal and spreading, suggesting that the controlled release of protease XIV can regulate hydrogel degradation. SF hydrogels incorporated with protease XIV-loaded microspheres are suitable for cell growth and proliferation and are expected to serve as excellent bone tissue engineering scaffolds.


Assuntos
Portadores de Fármacos/síntese química , Fibroínas/química , Pronase/administração & dosagem , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Encapsulamento de Células/instrumentação , Encapsulamento de Células/métodos , Células Cultivadas , Portadores de Fármacos/química , Durapatita/química , Hidrogéis/química , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Microesferas , Microtecnologia , Osteogênese/efeitos dos fármacos , Pronase/química , Pronase/farmacocinética , Seda/química , Técnicas de Cultura de Tecidos/métodos , Engenharia Tecidual
6.
Mater Sci Eng C Mater Biol Appl ; 116: 111143, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806229

RESUMO

Surface tension-driven assembly is a simple routine used in modular tissue engineering to create three-dimensional (3D) biomimetic tissues with desired structural and biological characteristics. A major bottleneck for this technology is the lack of suitable hydrogel materials to meet the requirements of the assembly process and tissue regeneration. Identifying specific requirements and synthesizing novel hydrogels will provide a versatile platform for generating additional biomimetic functional tissues using this approach. In this paper, we present a novel composite hydrogel system based on methacrylated gelatin and γ-polyglutamic acid by UV copolymerization as the building block for fabricating vascular-like tissue via surface tension-driven assembly. The resulting composite hydrogels exhibited the improved mechanical properties and hydrophilicity, which greatly facilitate the assembly process. Subsequent cell encapsulation experiment proved that the hydrogel could provide 3D support for cellular spreading and migration. Furthermore, based on the composite microgel building blocks, cylindrical vascular-like construct with a perfusable microchannel was generated by the needle-assisted sequential assembly. In order to construct a biomimetic vascular tissue, the endothelial cells and smooth muscle cells were encapsulated in the microgels assembly with a spatial arrangement to build a heterogeneous double-layer tubular structure and the cells could readily elongate and migrate in the hollow concentric construct over 3 days. These data suggest that this composite hydrogel is an attractive candidate for surface tension-driven assembly purposes, making the hydrogel potentially applicable in the fabrication of biomimetic vascularized tissues.


Assuntos
Células Endoteliais , Hidrogéis , Gelatina , Tensão Superficial , Engenharia Tecidual , Alicerces Teciduais
7.
Mater Sci Eng C Mater Biol Appl ; 99: 57-67, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889731

RESUMO

The regeneration of load-bearing soft tissues has long driven the research and development of bioactive hydrogels. A major challenge facing the application of hydrogels to load-bearing tissues is the development of hydrogels with appropriate biological functionality and biomechanical stability that closely mimic the host tissue. In this paper, we describe a newly synthesized cell-laden interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) that was formed via sequential sonication and photocrosslinking. The experimental results revealed that SF-GelMA IPN hydrogels exhibited high swelling ratios, excellent mechanical properties, resistance to enzymatic degradation by collagenase, and porous internal microstructures. Moreover, these properties could be tailored by changing the prepolymer components. MC3T3-E1 pre-osteoblasts attached to and subsequently proliferated on the IPN hydrogels, as demonstrated by fluorescein diacetate/propidium iodide (FDA/PI) staining and Cell Counting Kit-8 (CCK-8) analysis. In addition, the encapsulation of MC3T3-E1 pre-osteoblasts and a subsequent cell viability assay demonstrated that the entire IPN formation process was compatible with cells and that the growth of encapsulated cells could be tuned by adjusting the GelMA concentration, underlining their versatility for various load-bearing soft tissue engineering. Overall, this study introduces a class of mechanically robust and tunable cell-laden IPN hydrogels which have great potential as load-bearing soft tissue engineering scaffold.


Assuntos
Reagentes de Ligações Cruzadas/química , Fibroínas/química , Gelatina/química , Hidrogéis/química , Luz , Metacrilatos/química , Sonicação/métodos , Animais , Bombyx , Adesão Celular , Linhagem Celular , Proliferação de Células , Fluorescência , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA