Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; : PHYTO09230347R, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079373

RESUMO

Common scab is an economically costly soilborne disease of potato endemic in many potato-growing regions. The disease is caused by species of Streptomyces bacteria that produce the phytotoxin thaxtomin A. The primary disease management tool available to growers is planting resistant cultivars, but no cultivar is fully resistant to common scab, and partially resistant cultivars are often not the preferred choice of growers because of agronomic or market considerations. Therefore, growers would benefit from knowledge of the presence and severity of common scab infestations in field soils to make informed planting decisions. We implemented a quantitative PCR diagnostic assay to enable field detection and quantification of all strains of Streptomyces that cause common scab in the United States through amplification of thaxtomin A biosynthetic genes. Greenhouse trials confirmed that pathogen abundance was highly correlated with disease severity for five distinct phytopathogenic Streptomyces species, although the degree of disease severity was dependent on the pathogen species. Correlations between the abundance of the thaxtomin biosynthetic genes from field soil with disease on tubers at field sites across four U.S. states and across 2 years were not as strong as correlations observed in greenhouse assays. We also developed an effective droplet digital PCR diagnostic assay that also has potential for field quantification of thaxtomin biosynthetic genes. Further improvement of the PCR assays and added modeling of other environmental factors that impact disease outcome, such as soil composition, can aid growers in making informed planting decisions.

2.
Appl Spectrosc ; 77(5): 491-499, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898969

RESUMO

We report on the use of leaf diffuse reflectance spectroscopy for plant disease detection. A smartphone-operated, compact diffused reflectance spectrophotometer is used for field collection of leaf diffuse reflectance spectra to enable pre-symptomatic detection of the progression of potato late blight disease post inoculation with oomycete pathogen Phytophthora infestans. Neural-network-based analysis predicts infection with >96% accuracy, only 24 h after inoculation with the pathogen, and nine days before visual late blight symptoms appear. Our study demonstrates the potential of using portable optical spectroscopy in tandem with machine learning analysis for early diagnosis of plant diseases.


Assuntos
Phytophthora infestans , Solanum tuberosum , Análise Espectral , Folhas de Planta , Doenças das Plantas
3.
Front Plant Sci ; 13: 851538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401646

RESUMO

Early blight, caused by the fungus Alternaria solani, is one of the most economically important diseases of potatoes worldwide. We previously identified a tetraploid potato clone, B0692-4, which is resistant to early blight. To dissect the genetic basis of early blight resistance in this clone, a full-sib tetraploid potato population including 241 progenies was derived from a cross between B0692-4 and a susceptible cultivar, Harley Blackwell, in this study. The population was evaluated for foliage resistance against early blight in field trials in Pennsylvania in 2018 and 2019 and relative area under the disease progress curve (rAUDPC) was determined. The distribution of rAUDPC ranged from 0.016 to 0.679 in 2018, and from 0.017 to 0.554 in 2019. Broad sense heritability for resistance, as measured as rAUDPC, was estimated as 0.66-0.80. The population was also evaluated for foliar maturity in field trials in Maine in 2018 and 2020. A moderate negative correlation between rAUDPC and foliar maturity was detected in both years. A genetic linkage map covering a length of 1469.34 cM with 9124 SNP markers was used for mapping quantitative trait loci (QTL) for rAUDPC and foliar maturity. In 2018, three QTLs for early blight were detected; two of them on chromosome 5 overlapped with QTLs for maturity, and one of them on chromosome 7 was independent of maturity QTL. In 2019, six QTLs for early blight were detected; two QTLs on chromosome 5 overlapped with QTLs for maturity, and the other four QTLs did not overlap with QTLs for maturity. The identification of these QTLs provides new insight into the genetic basis of early blight resistance and may serve as sources for marker-assisted selection for early blight resistance breeding.

4.
Plant Dis ; 105(12): 3956-3966, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34232057

RESUMO

Resistance to late blight caused by Phytophthora infestans clonal lineage US-23 in 217 old and modern potato cultivars was evaluated in field trials in 2016 and 2017 in Pennsylvania. Significant differences in resistance were found among these cultivars (P < 0.0001). Significant interaction between cultivars and environments was found (P < 0.0001). The values of relative area under the disease progress curve ranged from 0 to 0.5841 in 2016 and from 0 to 0.5469 in 2017. Broad-sense heritability of late blight resistance was estimated to be 0.91, with a 95% confidence interval of 0.88 to 0.93. Cluster analysis classified the cultivars into five groups: resistant, moderately resistant, intermediate, moderately susceptible, and susceptible. Thirty cultivars showing resistance and 32 cultivars showing moderate resistance were identified. The 217 cultivars were also evaluated for foliar maturity, tuber yield, and resistance to early blight caused by Alternaria solani. A few cultivars with late blight resistance independent of late maturity were found. Late blight resistance and early blight resistance were positively correlated, and 17 cultivars possessed resistance to both diseases. Yield trade-off associated with late blight resistance was not observed among the cultivars in the absence of disease pressure.


Assuntos
Phytophthora infestans , Solanum tuberosum , Pennsylvania , Doenças das Plantas/genética , Tubérculos , Solanum tuberosum/genética
5.
Plant Dis ; 105(10): 3048-3054, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33728960

RESUMO

Despite the negative impact of common scab (Streptomyces spp.) on the potato industry, little is known about the genetic architecture of resistance to this bacterial disease in the crop. We evaluated a mapping population (∼150 full sibs) derived from a cross between two tetraploid potatoes ('Atlantic' × B1829-5) in three environments (MN11, PA11, ME12) under natural common scab pressure. Three measures to common scab reaction, namely percentage of scabby tubers and disease area and lesion indices, were found to be highly correlated (>0.76). Because of the large environmental effect, heritability values were zero for all three traits in MN11, but moderate to high in PA11 and ME12 (∼0.44 to 0.79). We identified a single quantitative trait locus (QTL) for lesion index in PA11, ME12, and joint analyses on linkage group 3, explaining ∼22 to 30% of the total variation. The identification of QTL haplotypes and candidate genes contributing to disease resistance can support genomics-assisted breeding approaches in the crop.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Solanum tuberosum , Mapeamento Cromossômico , Tubérculos/genética , Locos de Características Quantitativas/genética , Solanum tuberosum/genética , Tetraploidia
6.
Plant Dis ; 103(4): 629-637, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30742554

RESUMO

Early blight, caused by the fungus Alternaria solani, is one of the most economically important foliar diseases of potatoes worldwide. In this study, 217 tetraploid old and modern potato cultivars were evaluated for foliar resistance to early blight in field experiments in Pennsylvania in 2016 and 2017. Relative area under the disease progress curve (RAUDPC) was calculated based on visual assessment of foliar disease during the growing season each year. RAUDPC ranged from 0.0090 to 0.7372 in 2016 and from 0.0215 to 0.7889 in 2017, respectively. Significant differences in resistance to A. solani among cultivars were found (P < 0.0001). A significant interaction was found between cultivar and environment (P < 0.0001). Cluster analysis classified the cultivars into five groups: resistant, moderately resistant, intermediate, moderately susceptible, and susceptible. Broad-sense heritability for early blight resistance was estimated as 0.89 with a 95% confidence interval of 0.86 to 0.92. All cultivars were also evaluated for foliage maturity in separate field trials in 2016 and 2017, and a strong negative correlation between early blight resistance and maturity was found. Maturity-adjusted RAUDPC was calculated by regressing maturity on RAUDPC; predicted values more than two standard deviations greater or less than observed values were used to identify cultivars with greater genetic susceptibility or resistance to early blight, respectively, independent of maturity. Although most resistant and moderately resistant cultivars showed late maturity and most susceptible cultivars showed early maturity, a few exceptions were found.


Assuntos
Resistência à Doença , Doenças das Plantas , Solanum tuberosum , Alternaria/fisiologia , Resistência à Doença/genética , Humanos , Pennsylvania , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/genética , Solanum tuberosum/microbiologia
7.
PLoS One ; 6(3): e14749, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21445251

RESUMO

BACKGROUND: EPHX1 is a key enzyme in metabolizing some exogenous carcinogens such as products of cigarette-smoking. Two functional polymorphisms in the EPHX1 gene, Tyr113His and His139Arg can alter the enzyme activity, suggesting their possible association with carcinogenesis risk, particularly of some tobacco-related cancers. METHODOLOGY/PRINCIPAL FINDINGS: A comprehensive systematic review and meta-analysis was performed of available studies on these two polymorphisms and cancer risk published up to November 2010, consisting of 84 studies (31144 cases and 42439 controls) for Tyr113His and 77 studies (28496 cases and 38506 controls) for His139Arg primarily focused on lung cancer, upper aerodigestive tract (UADT) cancers (including oral, pharynx, larynx and esophagus cancers), colorectal cancer or adenoma, bladder cancer and breast cancer. Results showed that Y113H low activity allele (H) was significantly associated with decreased risk of lung cancer (OR = 0.88, 95%CI = 0.80-0.96) and UADT cancers (OR = 0.86, 95%CI = 0.77-0.97) and H139R high activity allele (R) with increased risk of lung cancer (OR = 1.18, 95%CI = 1.04-1.33) but not of UADT cancers (OR = 1.05, 95%CI = 0.93-1.17). Pooled analysis of lung and UADT cancers revealed that low EPHX1 enzyme activity, predicted by the combination of Y113H and H139R showed decreased risk of these cancers (OR = 0.83, 95%CI = 0.75-0.93) whereas high EPHX1 activity increased risk of the cancers (OR = 1.20, 95%CI = 0.98-1.46). Furthermore, modest difference for the risk of lung and UADT cancers was found between cigarette smokers and nonsmokers both in single SNP analyses (low activity allele H: OR = 0.77/0.85 for smokers/nonsmokers; high activity allele R: OR = 1.20/1.09 for smokers/nonsmokers) and in combined double SNP analyses (putative low activity: OR = 0.73/0.88 for smokers/nonsmokers; putative high activity: OR = 1.02/0.93 for smokers/ nonsmokers). CONCLUSIONS/SIGNIFICANCE: Putative low EPHX1 enzyme activity may have a potential protective effect on tobacco-related carcinogenesis of lung and UADT cancers, whereas putative high EPHX1 activity may have a harmful effect. Moreover, cigarette-smoking status may influence the association of EPHX1 enzyme activity and the related cancer risk.


Assuntos
Epóxido Hidrolases/metabolismo , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias Pulmonares/enzimologia , Fumar/efeitos adversos , Alelos , Estudos de Casos e Controles , Epóxido Hidrolases/genética , Humanos , Polimorfismo Genético , Fatores de Risco
8.
Phytopathology ; 98(4): 405-12, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18944188

RESUMO

The phytotoxin thaxtomin, produced by plant pathogenic Streptomyces species, is the only known pathogenicity determinant for common scab diseases of potato and other root and tuber crops. Genes encoding thaxtomin synthetase (txtAB) are found on a pathogenicity island characteristic of genetically diverse plant pathogenic Streptomyces species. In this study, an SYBR Green quantitative real-time polymerase chain reaction (PCR) assay using primers designed to anneal to the txtAB operon of Streptomyces was developed to quantify pathogenic bacterial populations in potatoes and soil. The real-time PCR assay was specific for pathogenic Streptomyces strains. The detection limit of the assay was 10 fg of the target DNA, or one genome equivalent. Cycle threshold (Ct) values were linearly correlated with the concentration of the target DNA (correlation coefficient R(2) = 0.99) and were not affected by the presence of plant DNA extracts, indicating the usefulness of the assay for quantitative analyses of the pathogenic bacteria in plant tissues. The amount of pathogenic Streptomyces DNA in total DNA extracts from 1 g asymptomatic and symptomatic tubers was quantified using the assay and ranged from 10(1) to 10(6) pg. A standard curve was established to quantify pathogenic Streptomyces in soil. Using the standard curve, numbers of pathogenic Streptomyces colony forming units were extrapolated to range from 10(3) to 10(6) per gram of soil from potato fields where common scab was found. This real-time PCR assay using primers designed from the txtAB operon allows rapid, accurate, and cost effective quantification of pathogenic Streptomyces strains in potato tubers and in soil.


Assuntos
Óperon/genética , Doenças das Plantas/microbiologia , Tubérculos/microbiologia , Microbiologia do Solo , Solanum tuberosum/microbiologia , Streptomyces/genética , DNA Bacteriano/isolamento & purificação , Sensibilidade e Especificidade
9.
J Eukaryot Microbiol ; 54(6): 465-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18070323

RESUMO

Spongospora subterranea is a soil-borne, obligate parasitic protist that causes powdery scab of potatoes. In this study, an in vitro culture system was developed for the maintenance and proliferation of the protist in potato hairy roots. The hairy roots of potato were induced in vitro with Agrobacterium rhizogenes. Cystosori of S. subterranea from potato scab lesions were surface disinfested and used to inoculate potato hairy roots. Plasmodia, zoosporangia, and cystosori were observed microscopically in the hairy roots within 6 wk after inoculation, indicating the completion of the life cycle of S. subterranea in vitro. This is the first in vitro culture system for S. subterranea, and will be a valuable tool to study fundamental and practical aspects of the biology of the parasite.


Assuntos
Eucariotos/crescimento & desenvolvimento , Parasitologia/métodos , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Solanum tuberosum/parasitologia , Animais , Técnicas de Cultura , Engenharia Genética/métodos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Rhizobium/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Transformação Genética
10.
Plant Dis ; 91(9): 1083-1088, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30780645

RESUMO

Grapevines infected with Tomato ring spot virus (ToRSV) pose an economic risk for growers in the northeastern United States. This study describes a one-step real-time reverse-transcription polymerase chain reaction (RT-PCR) SYBR Green assay for detecting ToRSV in grapevines. Two newly designed primer pairs based on the ToRSV coat protein gene sequence were evaluated for specificity and optimized for a SYBR Green assay. The primer pair ToRSV1f/1r yielded a 130-bp product with strong primer-dimer products, whereas the primer pair ToRSV2f/2r yielded a 330-bp product with weak primer dimer products. Real-time RT-PCR detected ToRSV in more naturally infected grapevines maintained in the greenhouse than did enzyme-linked immunosorbent assay. The nucleotide sequences of the fragments amplified from grapevine growing in Pennsylvania using real-time PCR were divergent from previously published sequences.

11.
Phytopathology ; 96(10): 1157-63, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18943505

RESUMO

ABSTRACT Spongospora subterranea f. sp. subterranea causes powdery scab in potatoes and is distributed worldwide. Genetic studies of this pathogen have been hampered due, in part, to its obligate parasitism and the lack of molecular markers for this pathogen. In this investigation, a single cystosorus inoculation technique was developed to produce large amounts of S. subterranea f. sp. subterranea plasmodia or zoosporangia in eastern black nightshade (Solanum ptycanthum) roots from which DNA was extracted. Cryopreservation of zoosporangia was used for long-term storage of the isolates. S. subterranea f. sp. subterranea-specific restriction fragment length polymorphism (RFLP) markers were developed from randomly amplified polymorphic DNA (RAPD) fragments. Cystosori of S. subterranea f. sp. subterranea were used for RAPD assays and putative pathogen-specific RAPD fragments were cloned and sequenced. The fragments were screened for specificity by Southern hybridization and subsequent DNA sequence BLAST search. Four polymorphic S. subterranea f. sp. subterranea-specific probes containing repetitive elements, and one containing single copy DNA were identified. These RFLP probes were then used to analyze 24 single cystosorus isolates derived from eight geographic locations in the United States and Canada. Genetic variation was recorded among, but not within, geographic locations. Cluster analysis separated the isolates into two major groups: group I included isolates originating from western North America, with the exception of those from Colorado, and group II included isolates originating from eastern North America and from Colorado. The techniques developed in this study, i.e., production of single cystosorus isolates of S. subterranea f. sp. subterranea and development of RFLP markers for this pathogen, provide methods to further study the genetic structure of S. subterranea f. sp. subterranea.

12.
Ann Bot ; 95(3): 423-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15574482

RESUMO

BACKGROUND AND AIMS: Seedling vigour is one of the major determinants for stable stand establishment in rice (Oryza sativa), especially in a direct seeding cropping system. The objectives of this study were to identify superior alleles with consistent effects on seedling vigour across different temperature conditions and to investigate genotype x environmental temperature interactions for seedling vigour QTL. METHODS: A set of 282 F13 recombinant inbred lines (RILs) derived from a rice cross were assessed for four seedling vigour traits at three temperatures (25 degrees C, 20 degrees C and 15 degrees C). Using a linkage map with 198 marker loci, the main-effect QTL for the traits were mapped by composite interval mapping. KEY RESULTS: A total of 34 QTL for the four seedling vigour traits were identified. Of these QTL, the majority (82%) were clustered within five genomic regions, designated as QTL qSV-3-1, qSV-3-2, qSV-5, qSV-8-1 and qSV-8-2. All of these five QTL had small individual effects on the traits, explaining 3.1-15.8 % of the phenotypic variation with a mean of 7.3 %. QTL qSV-3-1, qSV-3-2 and qSV-8-1 showed almost consistent effects on the traits across all three temperatures while qSV-5 and qSV-8-2 had effects mainly at the 'normal' temperatures of 20 degrees C and 25 degrees C. Among the five QTL identified, all and four showed additive effects on shoot length and germination rate, respectively. The contributions of these five QTL to shoot length and germination rate were also much larger than those to the other two traits. CONCLUSIONS: A few of genomic regions (or QTL) were identified as showing effects on seedling vigour. For these QTL, significant genotype x environmental temperature interactions were found and these interactions appeared to be QTL-specific. Among the four seedling vigour traits measured, shoot length and germination rate could be used as relatively good indicators to evaluate the level of seedling vigour in rice.


Assuntos
Oryza/genética , Oryza/fisiologia , Locos de Características Quantitativas/fisiologia , Plântula/fisiologia , Temperatura , Mapeamento Cromossômico , Cruzamentos Genéticos , Germinação , Fenótipo , Plantas Geneticamente Modificadas , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA