Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(3): 3926-3937, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095789

RESUMO

2,4-Dichlorophenol (2,4-DCP) is difficult to degrade rapidly in the environment due to its stable chemical properties, so it was easy to lead to serious chlorophenol pollution in soil. Consequently, a remediation method which is efficient, safe, and economical is required. In this study, electrokinetic (EK) remediation was used to transfer sodium persulfate (Na2S2O8) into soil to degrade 2,4-DCP, and the effect of several factors (including the addition location of Na2S2O8, applied voltage, and running time) on the remediation efficiency was explored. The concentration of Na2S2O8, residual efficiency of 2,4-DCP and distribution characteristics of pH, and electrical conductivity were analyzed. The results showed that the cathode was the optimal position to add Na2S2O8. Under this condition, Na2S2O8 was uniformly distributed in the whole soil column through electromigration. The optimal removal efficiency of 2,4-DCP in soil by adding Na2S2O8 was approximately 26% when the voltage gradient was 1.0 V/cm and the operating time was 9 days, which was mainly due to the degradation of S2O82-.


Assuntos
Clorofenóis , Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes do Solo/análise , Poluição Ambiental , Solo/química
2.
Chemosphere ; 286(Pt 2): 131784, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371358

RESUMO

Humus is an important parameter to affect the environmental fate of arsenic (As) in tailing soil. According to the batch and column experiment, the effects of humus (HS) including humic acid (HA), fulvic acid (FA) on the As release and basic properties of soil were studied in the soil from a mining region. In addition, HA was modified by 3-mercaptopropyltrimethoxysilane (3-MPTS) with different sulfur content (S%) to improve the release capacity of As. The results indicated that HS could destroy the binding of As with Fe, Mn, Al and Ca without affecting the basic properties of tailings soil, thus achieving the co-release of As and associated metals. Besides, the As release capacity of FA (25.47 %) was slightly higher than that of HA (21.90 %). The ability of thiol-modified HAs to release As from tailings soil after being modified with different S% of 3-MPTS was significantly improved, of which 2 % had the best treatment. The thiol groups (-SH) reached 45.00 % of total S. With the increase of S%, the surface thoil content, aromatization degree and total reduction capacity (TRC) of HA increased. The study demonstrated that HS and thiol-modified HA could promote the migration of As and could advance the treatment of heavy metal contaminated tailing soil.


Assuntos
Arsênio , Poluentes do Solo , Benzopiranos , Substâncias Húmicas/análise , Solo , Poluentes do Solo/análise , Compostos de Sulfidrila
3.
Water Sci Technol ; 83(8): 1824-1833, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33905355

RESUMO

In this paper, combined with the addition of ethylenediaminetetraacetic acid (EDTA), the electrochemical treatment of waste activated sludge (WAS) was investigated to explore its effect on the release of phosphorus (P) from WAS. The results showed that during the electrochemical treatment, the addition of EDTA could significantly promote the release of P from the WAS to the supernatant, the optimal amount of EDTA was 0.4 g/g total suspended solids (TSS), when the release of total dissolved phosphorus (TDP), organic phosphorus (OP) and molybdate reactive phosphorus (PO43--P) were 187.30, 173.84 and 13.46 mg/L, respectively. OP was the most likely form of P to be released during this process. Moreover, combined electrochemical-EDTA treatment could promote the release of P and metal ions from extracellular polymeric substances (EPSs) to the supernatant, and increase the solubility and disintegration of sludge. EDTA chelated the metal ions of sludge flocs and phosphate precipitates to cause sludge floc decomposition, thereby promoting the release of P from WAS.


Assuntos
Fósforo , Esgotos , Ácido Edético , Matriz Extracelular de Substâncias Poliméricas , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA