Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(11): 2625-2631, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35297247

RESUMO

Gated ion channels in biological cell membranes allow efficient tuning of cross-membrane ion transport with enhanced permeation and selectivity, converting ionic signals into various forms of electrical signals and energies on demands, which functionalities though are still difficult to achieve in artificial membranes. Here, we report cation-gated ion transport through synthesized porous aromatic films containing nanometer-scale ionic channels together with -NH2 groups at interiors. Ion selectivity and permeability is greatly tuned by gating cations, up to 2 orders of magnitude, and as a consequence, the membrane efficiently produces switchable electricity output from salinity gradients. The results are attributed to positively charged cations binding at -NH2 groups, which screens the intrinsic negative surface charge at channels' interiors and inverts charge polarity there. Our work adds understanding to ion gating effects at nanoscale and offers strategies of developing smart membranes and their heterostructures for separation, energy conversion, cell membrane mimics, and related technologies.


Assuntos
Canais Iônicos , Membranas Artificiais , Cátions , Membrana Celular , Canais Iônicos/química , Transporte de Íons
2.
Nano Lett ; 20(12): 8634-8639, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33179495

RESUMO

Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 Å in diameter with an estimated density of about 1012 cm-2. The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA